六、(本题10分) 设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...
六 本题 分 设 A 为 n 阶幂零阵 即存在正整数 k , 使得 A k ,证明: e A 与 I n A 相似. 证明 由 A 是幂零阵可知, A 的特征值全为零. 设 P 为非异阵, 使得 P AP J mathrm diag J r ,J r , cdots,J r k 为 Jordan 标准型. 下面通过三段论法来证明本题的结论. Step 对 Jordan 块 J r i 进行证明. ...
2018-07-10 07:01 0 1851 推荐指数:
六、(本题10分) 设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...
七、(本题10分) 设 $A_1,A_2,\cdots,A_m$ 为 $n$ 阶实对称阵, 其中 $A_1$ 为正定阵, 并且对任意的 $2\leq i<j\leq m$, $A_iA_1^{ ...
八、(本题10分) 设 $m$ 阶复方阵 $A$ 的全体不同特征值为 $\lambda_1,\cdots,\lambda_k$, 对应的几何重数分别为 $t_1,\cdots,t_k$; $n$ 阶 ...
六、(本题10分) 设 $A$ 为 $n$ 阶实对称阵, 证明: $A$ 有 $n$ 个不同的特征值当且仅当对 $A$ 的任一特征值 $\lambda_0$ 及对应的特征向量 $\alpha$, 矩 ...
六、(本题10分) 设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...
七、(本题10分) 设 $U,V,W$ 均为数域 $K$ 上的非零线性空间, $\varphi:V\to U$ 和 $\psi:U\to W$ 是线性映射, 满足 $r(\psi\varphi)=r ...
八、(本题10分) 设 $n$ 阶实方阵 $A$ 满足 $AA'=cA'A$, 其中 $c$ 为非零实数. 证明: 若 $r(A)=r\geq 1$, 则 $A$ 至少有一个 $r$ 阶主子式非零. ...
\alpha'|$ 升阶为下三角行列式, 第二步是第二分块行左乘 $-x\alpha$ 加到第一分块行上去, ...