前言 1. 删除重复 2. 异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6. 创建哑变量 统计师的Python日记【第7天:数据清洗(1)】 前言 根据我的Python学习计划: Numpy → Pandas ...
coding: utf Created on Wed Jul : : author: zhen import pandas as pdimport numpy as np 创建空的df,保存测试数据test df pd.DataFrame K : C , C , C , C , C , C , C , K : A , A , B , C , D ,np.NaN,np.NaN 按K 列进行分组,组 ...
2018-07-05 10:17 0 5241 推荐指数:
前言 1. 删除重复 2. 异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6. 创建哑变量 统计师的Python日记【第7天:数据清洗(1)】 前言 根据我的Python学习计划: Numpy → Pandas ...
接触Python两年多了,还从来没有独立用Python完成一个项目,说来惭愧。最近因为工作需要,用Excel和oracle整理数据貌似不可行了,于是转向Python,理所当然的踩了很多坑,一一记录下来,避免以后再次入坑,毕竟不常用,好了伤疤就会忘了疼··· 业务场景: 领导拿来几个 ...
1.数据错误: 错误类型– 脏数据或错误数据• 比如, Age = -2003– 数据不正确• ‘0’ 代表真实的0,还是代表缺失– 数据不一致• 比如收入单位是万元,利润单位是元,或者一个单位是美元,一个是人民币– 数据重复 2.缺失值处理: 处理原则–缺失值少于20%•连续变量 ...
1、知识点 2、中文数据清洗(使用停用词) 3、英文数据清洗(使用停用词) 4、nltk的停用词进行数据清洗 ...
参考:http://blog.sina.com.cn/s/blog_13050351e0102xfis.html https://www.sogou.com/link?url=DOb0bgH2eKh1 ...
对爬虫数据进行自然语言清洗时用到的一些正则表达式 标签中的所有属性匹配(排除src,href等指定参数) 参考链接 # \b(?!src|href)\w+=[\'\"].*?[\'\"](?=[\s\>]) # 匹配特征 id="..." # \b(?!...)排除属性名中 ...
set_option () 函数解决显示不全的问题 # 映射函数 data.apply() in ...