原文:Python实现批量梯度下降算法

...

2018-07-02 19:52 0 1161 推荐指数:

查看详情

梯度下降算法(1) - Python实现

算法介绍:梯度下降算法是一种利用一次导数信息求取目标函数极值的方法,也是目前应用最为广泛的局部优化算法之一。其具有实现简单、容易迁移、收敛速度较快的特征。在求解过程中,从预设的种子点开始,根据梯度信息逐步迭代更新,使得种子点逐渐向目标函数的极小值点移动,最终到达目标函数的极小值点。注意 ...

Fri Dec 07 08:27:00 CST 2018 0 3810
梯度下降算法以及其Python实现

一、梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系? 为了实现监督学习,我们选择采用 ...

Mon May 07 01:16:00 CST 2018 0 2284
python实现批量梯度,随机梯度下降以及小批量梯度下降

最近刚接触机器学习,就一个线性回归学起来都是十分的吃力 刚接触了梯度下降算法算法解析很多大牛解析的更好,我就放一下自己理解的写出的代码好了 需要用到的数据和导入库 import matplotlib.pyplot as plt from sklearn import ...

Sat Mar 23 00:37:00 CST 2019 0 529
【转】梯度下降算法以及其Python实现

一、梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系? 为了实现监督学习,我们选择采用自变量x1、x2的线性函数来评估因变量y值,得到 ...

Tue Feb 14 00:27:00 CST 2017 0 15935
随机梯度下降优化算法-----批量梯度下降,随机梯度下降,小批量梯度下降

  梯度下降算法是通过沿着目标函数J(θ)参数θ∈R的梯度(一阶导数)相反方向−∇θJ(θ)来不断更新模型参数来到达目标函数的极小值点(收敛),更新步长为η。有三种梯度下降算法框架,它们不同之处在于每次学习(更新模型参数)使用的样本个数,每次更新使用不同的样本会导致每次学习的准确性和学习时间 ...

Fri Jul 27 23:03:00 CST 2018 0 875
机器学习概念之梯度下降算法(全量梯度下降算法、随机梯度下降算法批量梯度下降算法

  不多说,直接上干货! 回归与梯度下降   回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如本地加权回归、逻辑回归,等等。   用一个 ...

Wed Sep 06 03:40:00 CST 2017 0 4220
梯度下降算法的理解和实现

梯度下降算法的理解和实现梯度下降算法是机器学习程序中非常常见的一种参数搜索算法。其他常用的参数搜索方法还有:牛顿法、坐标上升法等。 以线性回归为背景 ​ 当我们给定一组数据集合 \(D=\{(\mathbf{x^{(0)}},y^{(0)}),(\mathbf{x^{(1)}},y ...

Tue Sep 29 23:14:00 CST 2020 1 620
梯度下降推导与优化算法的理解和Python实现

1. 梯度下降算法推导 模型的算法就是为了通过模型学习,使得训练集的输入获得的实际输出与理想输出尽可能相近。 极大似然函数 的本质就是衡量在某个参数下, 样本整体估计和真实情况一样的概率 , 交叉熵函数 的本质是衡量样本 预测值与真实值之间的差距 ,差距越大代表越不相似 1. ...

Thu Mar 12 05:40:00 CST 2020 0 670
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM