算法具体可以参照其他的博客: 随机梯度下降: 小批量梯度下降: 通过迭代,结果会收敛到8和3: 参考:http://www.cnblogs.com/pinard/p/5970503.html ...
python实现bgd,sgd,mini bgd,newton,bfgs,lbfgs优化算法 数据样本三列特征,一列线性回归目标 ...
2018-06-29 17:51 0 1298 推荐指数:
算法具体可以参照其他的博客: 随机梯度下降: 小批量梯度下降: 通过迭代,结果会收敛到8和3: 参考:http://www.cnblogs.com/pinard/p/5970503.html ...
梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解。(当损失函数是凸函数时 ...
在机器学习、深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf ...
在机器学习、深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org ...
SGD SGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。 对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本。我们每次更新都利用一个batch的数据,而非整个训练集。即: xt+1 ...
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent)。 对目标(损失)函数求导 沿导数相反方向移动参数 在梯度下降中,对于参数 ...
前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1、10、100 或者是 10000 究竟有什么区别呢? 批量梯度下降(Batch Gradient Descent,BGD) 梯度下降 ...
在机器学习、深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf ...