目录 题目要求 单特征线性回归 方案一 方案二 多特征线性回归 两份数据 ex1data1.txt ex1data2.txt 题目要求 建立房价预测模型:利用ex1data1.txt ...
sklearn.linear model.LinearRegression.score Returns the coefficient of determination R of the prediction. The coefficient R is defined as u v , where u is the residual sum of squares y true y pred .su ...
2018-06-28 17:05 2 10365 推荐指数:
目录 题目要求 单特征线性回归 方案一 方案二 多特征线性回归 两份数据 ex1data1.txt ex1data2.txt 题目要求 建立房价预测模型:利用ex1data1.txt ...
Data Analysis的职位中,Hiv ...
一、模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.cross_val_predict(estimator,X) 计算并绘制模型的学习率 ...
参数 estimator:数据对象 X:数据 y:预测数据 soring:调用的方法cv:交叉验证生成器或可迭代的次数 n_jobs:同时工作的cpu个数(-1代表全部)verbose:详细程度fit_params:传递给估计器的拟合方法的参数pre_dispatch:控制并行执行 ...
灰色理论 通过对原始数据的处理挖掘系统变动规律,建立相应微分方程,从而预测事物未来发展状况。 优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较小; 缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。 灰色预测模型 在多种因素共同影响且内部因素难以全部 ...
组合预测模型---基于R语言的模型组合 组合预测模型的普遍形式为各个单项预测模型的加权平均, 因此组合预测模型的重点在于加权系数的确定。如果对各个单项预测模型的加权系数赋值合理, 那么整个组合预测模型的预测精度也会相应提高。目前常用的方法有算术平均法、 最优权数法、 方差倒数法等方差倒数法 ...
灰色预测模型 主要特点是模型使用的不是原始数据序列,而是生成的数据序列,核心体系为灰色模型(GM),即对原始数据作做累加生成(累减生成,加权邻值生成)得到近似指数规律再进行建模。 优点:不需要很多数据;将无规律原始数据进行生成得到规律性较强的生成序列。 缺点:只适用于中短期预测,只适合指数 ...
获取所需数据集: import os import pandas as pd import tarfile from six.moves import urllib DOWNLOAD_ROO ...