导入模块: 下载手写数据集: 训练数据60000个,长度和宽度都是28,标签也是6000个。 测试数据10000个。 图形化数据集,查看前10个数据集: 数据预处理: 将features以reshape转化 ...
Background 作为Deep Learning中的Hello World 项目无论如何都要做一遍的。 代码地址:Github 练习过程中将持续更新blog及代码。 第一次写博客,很多地方可能语言组织不清,请多多提出意见。。谢谢 . 背景知识: Linear regression CNN LeNet AlexNet ResNet VGG 各种regularization方式 . Catalo ...
2018-06-26 18:15 0 780 推荐指数:
导入模块: 下载手写数据集: 训练数据60000个,长度和宽度都是28,标签也是6000个。 测试数据10000个。 图形化数据集,查看前10个数据集: 数据预处理: 将features以reshape转化 ...
手写数字识别数据集简介 MNIST数据集(修改的国家标准与技术研究所——Modified National Institute of Standards and Technology),是一个大型的包含手写数字图片的数据集。该数据集由0-9手写数字 ...
Tensorflow+CNN下的mnist数据集手写数字识别 加载数据集 MNIST数据集包含55000个训练样本,10000个测试样本,还有5000个交叉验证数据样本。 输入:加载的每个手写数字图像是28 x 28像素大小的灰度图像。为了简化起见,将28x28的像素点展开为一维 ...
目录 一、背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二、方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层 ...
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph ...
转载请注明出处:http://www.cnblogs.com/willnote/p/6874699.html 前言 本文假设大家对CNN、softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上。所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法 ...
在本篇博文当中,笔者采用了卷积神经网络来对手写数字进行识别,采用的神经网络的结构是:输入图片——卷积层——池化层——卷积层——池化层——卷积层——池化层——Flatten层——全连接层(64个神经元)——全连接层(500个神经元)——softmax函数,最后得到分类的结果。Flatten层用于将池 ...