原文:LR和SVM的区别

一 相同点 第一,LR和SVM都是分类算法 SVM也可以用与回归 第二,如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的。 这里要先说明一点,那就是LR也是可以用核函数的。总之,原始的LR和SVM都是线性分类器,这也是为什么通常没人问你决策树和LR什么区别,你说一个非线性分类器和一个线性分类器有什么区别 第三,LR和SVM都是监督学习算法。 第四,LR和SVM都是 ...

2018-07-12 21:58 0 1063 推荐指数:

查看详情

Linear SVMLR区别和联系

首先,SVMLR(Logistic Regression)都是分类算法。SVM通常有4个核函数,其中一个是线性核,当使用线性核时,SVM就是Linear SVM,其实就是一个线性分类器,而LR也是一个线性分类器,这是两者的共同之处。 不同之处在于,第一,LR只要求计算出一个决策面,把样本点分为 ...

Tue Dec 19 22:52:00 CST 2017 0 1154
机器学习-LR推导及与SVM区别

之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助。 1、逻辑斯谛分布 介绍逻辑斯谛回归模型之前,首先看一个并不常见的概率分布,即逻辑斯谛分布。设X是连续 ...

Fri Apr 20 07:20:00 CST 2018 0 2729
逻辑回归(LR)和支持向量机(SVM)的区别和联系

1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结。 2. LRSVM的联系 都是监督的分类算法。 都是线性分类方法 (不考虑核函数时 ...

Mon Nov 12 04:29:00 CST 2018 0 5427
LRSVM的异同

原文:http://blog.sina.com.cn/s/blog_818f5fde0102vvpy.html 在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点”。第一次被问到这个问题的时候,含含糊糊地说了一些,大多不在点子 ...

Fri Dec 11 21:34:00 CST 2015 2 31603
SVMLR的比较

两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss。这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。SVM的处理方法是只考虑support vectors,也就是和分类最 ...

Sat Jul 16 04:45:00 CST 2016 0 4139
手推LRSVM

LR:   LR的目标是最小化模型分布和经验分布之间的交叉熵,LR基于概率理论中的极大似然估计。首先假设样本为0或者1的概率可以用sigmoid函数来表示,然后通过极大似然估计的方法估计出参数的值,即让模型产生的分布P(Y|X)尽可能接近训练数据的分布。 SVM:   SVM的目标 ...

Tue Aug 06 23:00:00 CST 2019 0 831
LRSVM的相同和不同

之前一篇博客中介绍了Logistics Regression的理论原理:http://www.cnblogs.com/bentuwuying/p/6616680.html。 在大大小小的面试过程中,经常会有这个问题:“请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点”。现在整理 ...

Sat Mar 25 20:19:00 CST 2017 1 4257
SVMLR、决策树的对比

一、LR LR,DT,SVM都有自身的特性,首先来看一下LR,工业界最受青睐的机器学习算法,训练、预测的高效性能以及算法容易实现使其能轻松适应工业界的需求。LR还有个非常方便实用的额外功能就是它并不会给出离散的分类结果,而是给出该样本属于各个类别的概率(多分类的LR就是softmax),可以尝试 ...

Wed Feb 27 03:35:00 CST 2019 0 1697
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM