首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达。 1.Deep learning与Neural Network 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑 ...
深度学习的基本原理是基于人工神经网络,输入信号经过非线性的active function,传入到下一层神经元 再经过下一层神经元的activate,继续往下传递,如此循环往复,直到输出层。正是因为这些active functions的堆砌,深度学习才被赋予了解决非线性问题的能力。当然,仅仅靠active functions还不足于使得深度学习具有 超能力 ,训练过程中的优化器对于组织神经网络中的各 ...
2018-06-26 10:24 2 2615 推荐指数:
首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达。 1.Deep learning与Neural Network 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑 ...
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算是火了一把,在Google Deep Mind的主页上,更是许多关于此 ...
1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning)、非监督学习(Unsupervised learning)以及半监督学习(Semi-supervised learning)是三类研究比较多,应用比较广的学习技术,wiki ...
《DEEP LEARNING》 《DEEP LEARNING》 1. 引言 1.1 什么是、为什么需要深度学习 1.2 简单的机器学习算法对数据表示的依赖 1.3 深度学习的历史趋势 最早的人 ...
Deep Learning(深度学习)学习笔记整理系列之常用模型(四、五、六、七) 转自: http://blog.csdn.net/zouxy09/article/details/8775524 九、Deep ...
从self-taught到deep networks: 从前面的关于self-taught learning介 ...
阅读目录 1. 写在前面 2. 什么是active learning? 3. active learning的基本思想 4. active learning与半监督学习的不同 5. 参考文献 1. 写在前面 在机器学习 ...
主动学习简介 在某些情况下,没有类标签的数据相当丰富而有类标签的数据相当稀少,并且人工对数据进行标记的成本又相当高昂。在这种情况下,我们可以让学习算法主动地提出要对哪些数据进行标注,之后我们要 ...