引入 狄杰斯特拉(Dijstra)算法解决的问题是:从图G中的某个指定顶点vk开始到其余各个顶点的最短路径,其中图G有n个顶点,k∈[0, n-1]。若还需要求某个顶点vx开始到其余各个顶点的最短路径(其中x≠k),则还需要再跑一次Dijstra算法。若用户需要图G中每个顶点到其余顶点最短路径 ...
相关概念 对于一个图G V, E ,求图中两点u, v间最短路径长度,称为图的最短路径问题。最短路径中最长的称为图的直径。 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法。求图中任意两点间的最短路径算法,称为多源最短路径算法。 常用的路径算法有: Dijkstra算法 SPFA算法 Bellman Ford算法 Floyd算法 Floyd Warshall算法 Johnson算法 ...
2018-06-24 10:06 0 3741 推荐指数:
引入 狄杰斯特拉(Dijstra)算法解决的问题是:从图G中的某个指定顶点vk开始到其余各个顶点的最短路径,其中图G有n个顶点,k∈[0, n-1]。若还需要求某个顶点vx开始到其余各个顶点的最短路径(其中x≠k),则还需要再跑一次Dijstra算法。若用户需要图G中每个顶点到其余顶点最短路径 ...
https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例。图7-7-12的左图是一个简单的3个顶点的连通网图。 我们先定义两个二维数组D[3][3]和P ...
算法的本质 用三重循环来清算每个点 对 缩小相邻任意“点对儿”距离的贡献 即每个顶点都有可能使得另外两个顶点之间的距离变短 贡献核心在于两边之和大于第三边 清算完成后即得任意两点的最短路径 算法的基本思想 最开始只允许经过1号顶点进行中转 接下 ...
弗洛伊德算法大致有点像dp的推导 dp[i][j] = min(dp[i][k] + dp[k][j], dp[i][j]), 其中 i 是起始点,j 是终止点。k是它们经过的中途点。 通过这个公式不断地更新dp[i][j],得到最短路径长。 我们先定义两个矩阵,minpath[i ...
这个算法主要要弄懂三个循环的顺序关系。 弗洛伊德(Floyd)算法过程:1、用D[v][w]记录每一对顶点的最短距离。2、依次扫描每一个点,并以其为基点再遍历所有每一对顶点D[][]的值,看看是否可用过该基点让这对顶点间的距离更小。 算法理解: 最短距离有三种情况:1、两点的直达距离最短 ...
总结分析 是一个简单的dp 像迪杰斯特拉算法,不断对两个结点之间的距离进行松弛 松弛:比如原本记录结点1到结点4的距离为6,这次k是结点2,结点1到结点2距离为2,结点2到结点4的距离为3,总距离为5,即可更新结点1到结点4的距离 还不是很懂dp ...
转载:https://blog.csdn.net/qq_35644234/article/details/60875818 Floyd算法的介绍 算法的特点 弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题 ...
核心思想:从i号顶点到j号顶点只经过前k号点的最短路程 ...