原文:如何进行特征选择

前言 这是百度的周末AI课程的第三讲。主要讲的是如何进行特征选择,分成两部分的内容,第一部分是特征选择的理论,第二部分是代码。 理论部分:一个典型的机器学习任务是通过样本的特征来预测样本所对应的值。特征过多会导致模型过于复杂,从而导致过拟合 而特征过少则会导致模型过于简单,从而导致欠拟合。事实上,如果特征数大于样本数,那么过拟合就不可避免。 特征数比较少的时候,我们需要增加特征。增加特征方法很多: ...

2018-06-24 00:44 0 1466 推荐指数:

查看详情

用遗传算法进行特征选择

曾经的我只知道,这台电脑缺一个好的显卡;现在的我还知道,原来这台电脑还缺一个好的CPU。 ——作者 遗传算法介绍 源码 一、算法 1.初始化种群 一个种群有好几条染色体 一条染色体大概长这样:[0,1,1,0,0,1,0,1,1,0,1] 1表示选择这个特征,0表示不选择 ...

Sat Apr 04 22:52:00 CST 2020 0 3411
特征选择---SelectKBest

官网的一个例子(需要自己给出计算公式、和k值) 参数 1、score_func ...

Wed Jan 13 04:01:00 CST 2021 0 307
特征选择

概述 针对某种数据,通过一定的特征提取手段,或者记录观测到的特征,往往得到的是一组特征,但其中可能存在很多特征与当前要解决的问题并不密切等问题。另一方面,由于特征过多,在处理中会带来计算量大、泛化能力差等问题,即所谓的“维数灾难”。 特征选择便是从给定的特征集合中选出相关特征子集的过程 ...

Sat Jan 19 05:39:00 CST 2019 0 1046
mRMR特征选择

1、介绍   Max-Relevance and Min-Redundancy,最大相关—最小冗余。最大相关性保证特征和类别的相关性最大;最小冗余性确保特征之间的冗余性最小。它不仅考虑到了特征和标注之间的相关性,还考虑到了特征特征之间的相关性。度量标准使用的是互信息(Mutual ...

Wed Mar 09 02:46:00 CST 2022 2 1408
特征选择-嵌入

3.2 Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树 ...

Tue Apr 23 01:43:00 CST 2019 0 587
sklearn——特征选择

一、关于特征选择 主要参考连接为:参考链接,里面有详细的特征选择内容。 介绍 特征选择特征工程里的一个重要问题,其目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方 ...

Mon Sep 23 18:04:00 CST 2019 0 638
文本特征选择

  在做文本挖掘,特别是有监督的学习时,常常需要从文本中提取特征,提取出对学习有价值的分类,而不是把所有的词都用上,因此一些词对分类的作用不大,比如“的、是、在、了”等停用词。这里介绍两种常用的特征选择方法: 互信息   一个常用的方法是计算文档中的词项t与文档类别c的互信息MI,MI度量 ...

Fri Jun 06 04:45:00 CST 2014 1 7105
特征选择方法

看到一篇好文章分享出来,看别人是如何选特征的,作者是Edwin Jarvis 作者:Edwin Jarvis 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层 ...

Fri Jan 17 20:43:00 CST 2020 0 1813
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM