1. 介绍 决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象/分类,树中的每一个分叉路径代表某个可能的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象 ...
介绍 决策树分为分类决策树和回归决策树: 上一篇介绍了分类决策树以及Python实现分类决策树: 监督学习 决策树理论与实践 上 :分类决策树 决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象 分类,树中的每一个分叉路径代表某个可能的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示 ...
2018-06-23 09:41 0 1726 推荐指数:
1. 介绍 决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象/分类,树中的每一个分叉路径代表某个可能的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象 ...
CART(Classification and Regression tree)分类回归树由L.Breiman,J.Friedman,R.Olshen和C.Stone于1984年提出。ID3中根据属性值分割数据,之后该特征不会再起作用,这种快速切割的方式会影响算法的准确率。CART是一棵二叉树 ...
决策树模型练习:https://www.kaggle.com/c/GiveMeSomeCredit/overview 1. 监督学习--分类 机器学习肿分类和预测算法的评估: a. 准确率 b.速度 c. 强壮行 d.可规模性 e. 可解释 ...
前言 本系列教程基本就是摘抄《Python机器学习基础教程》中的例子内容。 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine ...
继上篇文章决策树之 ID3 与 C4.5,本文继续讨论另一种二分决策树 Classification And Regression Tree,CART 是 Breiman 等人在 1984 年提出的,是一种应用广泛的决策树算法,不同于 ID3 与 C4.5, CART 为一种二分决策树, 每次 ...
来源商业新知网,原标题:决策树的Python实现(含代码) 一天,小迪与小西想养一只宠物。 小西:小迪小迪,好想养一只宠物呀,但是不知道养那种宠物比较合适。 小迪:好呀,养只宠物会给我们的生活带来很多乐趣呢。不过养什么宠物可要考虑好,这可不能马虎。我们需要考虑一些比较重要的问题。 小西 ...
一.数据产生 KNN分类 KNN回归预测 KNN参数k对回归预测的影响 线性回归预测模型 线性回归图示 多元线性回归预测 ...
回归 决策树也可以用于执行回归任务。我们首先用sk-learn的DecisionTreeRegressor类构造一颗回归决策树,并在一个带噪声的二次方数据集上进行训练,指定max_depth=2: 下图是这棵树的结果: 这棵树看起来与之前构造的分类树类似。主要 ...