数据集来源:http://archive.ics.uci.edu/ml/datasets/Wine+Quality 引用说明 P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences ...
在本次分析中,我使用了随机森林回归,并涉及数据标准化和超参数调优。在这里,我使用随机森林分类器,对好酒和不太好的酒进行二元分类。 首先导入数据包: 导入数据: 注释: fixed acidity:非挥发性酸 volatile acidity :挥发性酸 citric acid:柠檬酸 residual sugar :剩余糖分 chlorides:氯化物 free sulfur dioxide : ...
2018-06-20 12:39 0 5551 推荐指数:
数据集来源:http://archive.ics.uci.edu/ml/datasets/Wine+Quality 引用说明 P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences ...
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1、认识PCA (1)简介 (2)方法步骤 2、提取主成分 3、主成分方差可视化 4、特征变换 5、数据分类结果 6、完整代码 总结: 1、认识PCA (1)简介 ...
目录 线性判别分析(LDA)数据降维及案例实战 一、LDA是什么 二、计算散布矩阵 三、线性判别式及特征选择 四、样本数据降维投影 五、完整代码 结语 一、LDA是什么 LDA概念及与PCA区别 LDA线性判别分析(Linear ...
摘要 本例为演示数据分析的流程和对概率论和数理统计基础知识的应用,使用Python的pandas和statmodels生成标准的描述性统计量和模型,对数据集进行探索和摘要分析,并利用多元线性回归进行回归分析。 本例以葡萄酒类型为标签,分为白葡萄酒和红葡萄酒。比较这两种葡萄酒的差别并选取葡萄酒 ...
3.1 原始数据分析 1)测试数据为:wine data set,储存在chapter_WineClass.mat。classnumer = 3;wine,记录了178个样本的13个属性;wine_labels.178×1,记录了178个样本的各自类别标签。 2)数据的可视化:13个指标的属性 ...
原文链接:http://tecdat.cn/?p=22492 原文出处:拓端数据部落公众号 我们将使用葡萄酒数据集进行主成分分析。 数据 数据包含177个样本和13个变量的数据框;vintages包含类标签。这些数据是对生长在意大利同一地区但来自三个不同栽培品种的葡萄酒进行 ...
1. 明确需求和目的 以葡萄酒类型为标签,分为白葡萄酒和红葡萄酒。比较这两种葡萄酒的差别并选取葡萄酒的化学成分:固定酸度、挥发性酸度、柠檬酸、氯化物、游离二氧化硫、总硫度、密度、PH值、硫酸盐、酒精度数共11个,针对酒的各类化学成分建立线性回归模型,从而预测该葡萄酒的质量评分。 2. 数据收集 ...
导读:ML.NET系列文章 本文将基于ML.NET v0.2预览版,介绍机器学习中的分类和回归两个重要概念,并实现白葡萄酒品质预测。 本系列前面的文章也提到了一些,经典的机器学习最主要的特点就是模拟,具体来说就是定义出一个y=f(x)函数,x就是我们定义的特征值(它可能是一个/组标量,也可能是 ...