问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome ...
前言 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。这些特征值并不是连续的,而是离散的,无序的。通常我们需要对其进行特征数字化。 那什么是特征数字化呢 例子如下: 性别特征: 男 , 女 祖国特征: 中国 , 美国, 法国 运动特征: 足球 , 篮球 , 羽毛球 , 乒乓球 假如某个样本 某个人 ,他的特征是这样的 男 , 中国 , 乒乓球 ,我们可以用 ...
2018-06-19 10:45 0 20284 推荐指数:
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome ...
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制,包含独热编码(One-Hot Encoding)代码) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign ...
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。 例如,考虑一下的三个特征: ["male", "female"] ["from ...
一、问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。 离散特征的编码分为两种情况: 1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码 2、离散特征的取值有大小的意义,比如size:[X,XL,XXL ...
One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。 One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值 ...
背景 接触tensorflow时,学习到mnist,发现处理数据的时候采取one-hot编码,想起以前搞FPGA状态机遇到过格雷码与独热码。 解析: 将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。 比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个 ...
今天阅读到一篇关于one-hot编码的文章,这篇文章主要回答了两个问题: 机器学习为什么需要one-hot编码? 为什么不能直接用数据预测模型? one-hot编码把分类数据转化为二进制格式,供机器学习使用。 下图是one-hot编码的一个实例: [1] https ...
前几天查了一些与独热编码相关的资料后,发现看不进去...看不太懂,今天又查了一下,然后写了写代码,通过自己写例子加上别人的解释后,从结果上观察,明白了sklearn中独热编码做了什么事。 下面举个例子解释一下: code: from ...