这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容。 程序的开头是导入TensorFlow: import tensorflow as tf from ...
title: Python实现bp神经网络识别MNIST数据集 date: T : : : tags: categories: python 前言 训练时读入的是.mat格式的训练集,测试正确率时用的是png格式的图片 代码 数据集下载: 链接: https: pan.baidu.com s ldWTSqVUm l cc EDOzHpQ 提取码: mm ...
2018-06-18 14:14 2 3234 推荐指数:
这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容。 程序的开头是导入TensorFlow: import tensorflow as tf from ...
记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对。 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码。 mnist数据集训练数据一共有28*28*60000个像素,标签有60000个。 测试数据一共有28*28*10000个,标签10000 ...
记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对。 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码。 mnist数据集训练数据一共有28*28*60000个像素,标签有60000个。 测试数据一共有28*28*10000个,标签10000 ...
全连接神经网络BP算法的原理在此不再赘述了,网上有大量的资料可以参考,我就直接贴代码:(用着还行的,帮忙点个推荐啊) ...
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔 ...
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%。在换用多层神经网络后,正确率已有很大的提升。这次将采用卷积神经网络继续进行测试。 1、模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层)。其中卷积层 ...
library(AMORE)data<-read.table('G:\\dataguru\\ML\\ML09\\基于BP网络的个人信贷信用评估\\基于BP网络的个人信贷信用评估\\german.data-numeric')for (i in 1:25) {data[,i] < ...
作者有话说 最近学习了一下BP神经网络,写篇随笔记录一下得到的一些结果和代码,该随笔会比较简略,对一些简单的细节不加以说明。 目录 BP算法简要推导 应用实例 PYTHON代码 BP算法简要推导 该部分用一个$2\times3\times 2\times1$的神经网络 ...