一、区别 ①本质上相同,都是把Map端数据分类处理后交由Reduce的过程。 ②数据流有所区别,MR按map, spill, merge, shuffle, sort, reduce等各阶段逐一实现。Spark基于DAG数据流,可实现更复杂数据流操作(根据宽/窄依赖实现) ③实现功能上有所区别 ...
mr的shufflemapShuffle数据存到hdfs中是以块进行存储的,每一个块对应一个分片,maptask就是从分片中获取数据的在某个节点上启动了mapTask,mapTask读取是通过k v来读取的,读取的数据会放到环形缓存区,这样做的目的是为了防止IO的访问次数,然后环形缓存区的内存达到一定的阀值的时候会把文件益写到磁盘,溢出的各种小文件会合并成一个大文件,这个合并的过程中会进行排序, ...
2018-06-14 23:41 0 3922 推荐指数:
一、区别 ①本质上相同,都是把Map端数据分类处理后交由Reduce的过程。 ②数据流有所区别,MR按map, spill, merge, shuffle, sort, reduce等各阶段逐一实现。Spark基于DAG数据流,可实现更复杂数据流操作(根据宽/窄依赖实现) ③实现功能上有所区别 ...
的可扩展性。 可能大家多MR的shuffle比较清楚,相对来说MR的shuffle是比较清晰和粗暴的。 ...
------------恢复内容开始------------ 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spark,mapReducehe和Spark之间的最大区别是前者较偏向于离线处理,而后者重视实现性,下面主要介绍mapReducehe和Spark两 ...
源文件放在github,随着理解的深入,不断更新,如有谬误之处,欢迎指正。原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/sort-shuffle.md 正如你所知,spark实现了多种shuffle方法 ...
1、spark shuffle:spark 的 shuffle 主要发生在 DAG 视图中的 stage 和 stage 之间,也就是RDD之间是宽依赖的时候,会发生 shuffle。 补充:spark shuffle在很多地方也会参照mapreduce一样,将它分成两个阶段map阶段 ...
step1 input InputFormat读取数据,将数据转换成<key ,value>对,设置FileInputFormat,默认是文本格式(TextInputForma ...
shuffle是spark中一个很重要的概念,它表示的是上游分区的数据打散到下游分区中。一般来说,shuffle类的算子比如reducebykey会发生shuffle,但是并不是一定会产生。 比如,前面已经经过groupbykey进行分组了,现在再次调用shuffle类算子 ...
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌、混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好。MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据。 为什么MapReduce计算模型需要 ...