最近学习了生成对抗网络(GAN),基于几个经典GAN网络结构做了些小实验,包括dcgan,wgan,wgan-gp。坦率的说,wgan,wgan-gp论文的原理还是有点小复杂,我也没有完全看明白,因此在此就不详细介绍了,如果感兴趣可以阅读参考部分的论文,本篇博客主要着重于记录如何利用 ...
DCGAN WGAN WGAN GP LSGAN BEGAN原理总结及对比 from:https: blog.csdn.net qq article details GAN系列学习 前生今世 本文已投稿至微信公众号 机器学习算法工程师,欢迎关注 本文是GAN系列学习 前世今生第二篇,在第一篇中主要介绍了GAN的原理部分,在此篇文章中,主要总结了常用的GAN包括DCGAN,WGAN,WGAN GP, ...
2018-06-11 11:03 0 14811 推荐指数:
最近学习了生成对抗网络(GAN),基于几个经典GAN网络结构做了些小实验,包括dcgan,wgan,wgan-gp。坦率的说,wgan,wgan-gp论文的原理还是有点小复杂,我也没有完全看明白,因此在此就不详细介绍了,如果感兴趣可以阅读参考部分的论文,本篇博客主要着重于记录如何利用 ...
图文详解WGAN及其变体WGAN-GP并利用Tensorflow2实现WGAN与WGAN-GP 构建WGAN(Wasserstein GAN) Wasserstein loss介绍 ...
目录 1,WGAN 1.1,从GAN到WGAN,最核心的有这么几点: 1.2,相较于GAN,WGAN做了以下改进 2,WGAN-GP 2.1,WGAN直接对权重的值进行约束的方式存在两个问题 2.2,改进 ...
作为距离公式 DCGAN DCGAN(deep convolutional generat ...
在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文《Wasserstein GAN》却在Reddit的Machine Learning频道火了,连Goodfellow ...
GAN回顾 Martin 称这个loss为original cost function(参见[1] 2.2.1章节),而实际操作中采用的loss为the –log D ...
一、原始GAN的理论分析 1.1 数学描述 其实GAN的原理很好理解,网络结构主要包含生成器 (generator) 和鉴别器 (discriminator) ,数据主要包括目标样本 \(x_r \sim P_{r}\), 随机输入样本 \(z \sim P_{z}\) 。生成器的目的 ...
WassersteinGAN源码 作者的代码包括两部分:models包下包含dcgan.py和mlp.py, 这两个py文件是两种不同的网络结构,在dcgan.py中判别器和生成器都含有卷积网络,而mlp.py中判别器和生成器都只是全连接。 此外main.py为主函数,通过引入import ...