贝塞尔曲线 为什么要讲贝塞尔曲线,实际上 Android 中很多效果都有用到贝塞尔曲线。 QQ 的消息拽拖小红点旗袍消失的效果 QQ空间 直播页面右下角的礼物冒泡特效 水流 ...
贝塞尔曲线: 似乎是在Windows XP的屏幕保护选项里面看到过贝塞尔曲线,一直对这个名字比较感兴趣,刚好最近想起来了便百度了一下。 参考:贝塞尔曲线扫盲是当时第一次看的,讲的挺通俗易懂的 Wiki:wikipedia B zier curve 绘制算法:de Casteljau s 算法 学习过Photoshop,对里面的钢笔工具印象颇深,看到钢笔工具用的就是贝塞尔曲线的时候内心也是激动不已。 ...
2018-06-09 21:58 0 1580 推荐指数:
贝塞尔曲线 为什么要讲贝塞尔曲线,实际上 Android 中很多效果都有用到贝塞尔曲线。 QQ 的消息拽拖小红点旗袍消失的效果 QQ空间 直播页面右下角的礼物冒泡特效 水流 ...
绘制曲线 相对于直线而言,曲线的绘制与坐标关系更难理解一些。由于LayaAir引擎绘制的是贝塞尔曲线,所以本文中先针对贝塞尔曲线的基础进行说明,然后再结合引擎的API进行讲解。 一、贝塞尔曲线的基础">一、贝塞尔曲线的基础 贝塞尔曲线在港澳台等地称为貝茲曲線,新加坡马来西亚等地称为 ...
原理和简单推导(以三阶为例): 设P0、P02、P2是一条抛物线上顺序三个不同的点。过P0和P2点的两切线交于P1点,在P02点的切线交P0P1和P2P1于P01和P11,则如下比例成立: 这是所谓抛物线的三切线定理。 当P0,P2固定,引入参数t,令上述比值为t ...
贝塞尔曲线于1962年,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由 Paul de Casteljau 于1959年运用 de Casteljau 算法开发,以稳定数值的方法求出贝塞尔曲线。 1.线性贝塞尔曲线 ...
------------恢复内容开始------------ ------------恢复内容结束------------ ...
效果图: <body> <canvas id="test" width="800" height="300"></canvas> <script type="text/javascript"> //一个工具函数,用于将角度从角度制转化成 ...
Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线。曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状。 一次Bezier曲线公式: 一次Bezier曲线是由P0至P1的连续点,描述的一条线段 二次Bezier曲线公式: 二次Bezier ...