一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面 ...
KNN算法是机器学习领域中一个最基本的经典算法。它属于无监督学习领域的算法并且在模式识别,数据挖掘和特征提取领域有着广泛的应用。 给定一些预处理数据,通过一个属性把这些分类坐标分成不同的组。这就是KNN的思路。 下面,举个例子来说明一下。图中的数据点包含两个特征: 现在,给出数据点的另外一个节点,通过分析训练节点来把这些节点分类。没有分来的及诶但我们标记为白色,如下所示: 直观来讲,如果我们把那 ...
2018-06-07 14:15 0 3530 推荐指数:
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面 ...
KNN算法基本的思路是比较好理解的,今天根据它的特点写了一个实例,我会把所有的数据和代码都写在下面供大家参考,不足之处,请指正。谢谢! update:工程代码全部在本页面中,测试数据已丢失,建议去UCI Dataset中找一个自行测试一下。 几点说明: 1.KNN中的K ...
KNN算法 一、KNN算法概述 KNN是Machine Learning领域一个简单又实用的算法,与之前讨论过的算法主要存在两点不同: 它是一种非参方法。即不必像线性回归、逻辑回归等算法一样有固定格式的模型,也不需要去拟合参数。 它既可用于分类,又可 ...
KNN-K最近邻算法 什么是KNN算法 KNN算法是寻找最近的K个数据,推测新数据的分类 算法原理 通用步骤 计算距离(常用有欧几里得距离、马氏距离) 升序排序 取前K个 加权平均 K的选取 K太大:会导致分类模糊 K太小:容易受个例影响,波动较大 ...
高维稀疏数据进行快速相似查找,可以采用learning to hash,但高维稠密数据查找则采用annoy learning to hash 参考: https://blog.csdn.net/h ...
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类。由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离 ...
K邻近(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法了。它采用测量不同特征值之间的距离方法进行分类。它的思想很简单:计算一个点A与其他所有点之间的距离,取出与该点最近的k个点,然后统计这k个点里面所属分类比例最大的,则点A属于该分类。 下面用一个例子来说明一下 ...
何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居。为何要找邻居?打个比方来说,假设你来到一个陌生的村庄,现在你要找到与你有着相似特征的人群融入 ...