原文:使用谷歌CoLaboratory训练神经网络

前言 Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果。它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行。Colaboratory 笔记本存储在 Google 云端硬盘 https: drive.google.com 中,并且可以共享,就如同您使用 Google 文档或表格一样。 CoLaboratory 首先,访问 ...

2018-06-07 10:41 0 1116 推荐指数:

查看详情

使用Colaboratory的免费GPU训练神经网络

1 Colaboratory 介绍 Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果。它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行。 2 搭建 Colaboratory 打开谷歌使用邮箱登陆 ...

Tue May 07 20:25:00 CST 2019 0 1859
如何训练神经网络

的问题:(好吧,这块受训练水平的影响,还是借鉴另一篇博客的翻译:神经网络六大坑)   1,you d ...

Tue Nov 02 23:50:00 CST 2021 0 123
使用Google Colab训练神经网络(二)

Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果。它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行。Colaboratory 笔记本存储在 Google 云端硬盘 (https://drive.google.com ...

Wed Mar 06 02:10:00 CST 2019 0 1224
神经网络及其训练

在前面的博客人工神经网络入门和训练深度神经网络,也介绍了与本文类似的内容。前面的两篇博客侧重的是如何使用TensorFlow实现,而本文侧重相关数学公式及其推导。 1 神经网络基础 1.1 单个神经元 一个神经元就是一个计算单元,传入$n$个输入,产生一个输出,再应用于激活函数。记$n$维 ...

Fri Jun 08 06:05:00 CST 2018 0 11915
加速神经网络训练

  为什么要加速神经网络,数据量太大,学习效率太慢。越复杂的神经网络 , 越多的数据,需要在训练神经网络的过程上花费的时间也就越多。原因很简单,就是因为计算量太大了。可是往往有时候为了解决复杂的问题,复杂的结构和大数据又是不能避免的,所以需要寻找一些方法, 让神经网络训练变得快起来。为了便于理解 ...

Wed Apr 10 04:17:00 CST 2019 0 541
神经网络训练的过程

神经网络训练的过程可以分为三个步骤 1.定义神经网络的结构和前向传播的输出结果 2.定义损失函数以及选择反向传播优化的算法 3.生成会话并在训练数据上反复运行反向传播优化算法 神经神经元是构成神经网络的最小单位,神经元的结构如下 一个神经元可以有多个输入和一个输出,每个神经 ...

Wed Oct 23 16:27:00 CST 2019 0 1668
神经网络训练技巧

参数初始化 是否可以将全部参数初始化为0 同一层的任意神经元都是同构的 它们的输入输出都相同,因此前向反向传播的取值完全相同 训练一直是对称的,同一层参数都是相同的 随机初始化参数 初始化参数为取值范围\((-\dfrac ...

Mon Nov 25 00:29:00 CST 2019 0 369
如何使用优化器让训练网络更快——神经网络的奥秘

摘要: 本文介绍了创建神经网络使用的多种优化器,并讲述了如何使用优化器让训练网络更快。 通过使用Numpy来创建神经网络,让我意识到有哪些因素影响着神经网络的性能。架构、超参数值、参数初始化,仅是其中的一部分,而这次我们将致力于对学习过程的速度有巨大影响的决策,以及所获得的预测 ...

Tue Nov 27 23:44:00 CST 2018 0 652
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM