本文主要介绍MapReduce的map与reduce所包含的各各阶段 MapReduce中的每个map任务可以细分4个阶段:record reader、mapper、combiner和partitioner。map任务的输出被称 ...
要理解MapReduce,就必须理解其框架结构,把这三者放在一起讲是为了便于大家理解。 也就是两大组件Map与Reduce 首先看看Map 声明:这里感谢Pig 的文章,对我启发很大,也顺便引用一下她的一些东西 首先看看Map类中包含哪些方法: 首先看看run方法,它就像是一个控制器 很明显,Map中的run方法遵循setup gt map gt cleanup setup源码: 很明显,只传入了 ...
2018-06-03 17:50 0 1673 推荐指数:
本文主要介绍MapReduce的map与reduce所包含的各各阶段 MapReduce中的每个map任务可以细分4个阶段:record reader、mapper、combiner和partitioner。map任务的输出被称 ...
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看 ...
JobConf.setNumMapTasks(n)是有意义的,结合block size会具体影响到map任务的个数,详见FileInputFormat.getSplits源码。假设没有设置mapred.min.split.size,缺省为1的情况下,针对每个文件会按照min (totalsize ...
操作: MapReduce框架将文件分为多个splits,并为每个splits创建一个Mapper,所以Mappers的个数直接由splits的数目决定。而Reducers的数目可以通过job.setNumReduceTasks()函数设置 1、Map任务的个数: 理论值 ...
转自:https://blog.csdn.net/lb812913059/article/details/79898818 1、Map任务的个数 读取数据产生多少个Mapper?? Mapper数据过大的话,会产生大量的小文件,过多的Mapper创建和初始化都会消耗大量的硬件资源 Mapper ...
源测试数据为: HBase查询结果为: 转载请注明出处,谢谢。 ...
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程。中间留了一个问题,就是任务到底是怎么分配的。任务的分配自然是由JobTracker做出来的,具体 ...
上一节分析了Job由JobClient提交到JobTracker的流程,利用RPC机制,JobTracker接收到Job ID和Job所在HDFS的目录,够早了JobInProgress对象,丢入队列 ...