主成分分析原理与实现 主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从而可以大大节省空间和数据量。最近课上学到这个知识,感觉很有意思,就在网上找一些博客 ...
前言 主成分分析 PCA 实现一般有两种,一种是对于方阵用特征值分解去实现的,一种是对于不是方阵的用奇异值 SVD 分解去实现的。 一 特征值 特征值很好理解,特征值和特征向量代表了一个矩阵最鲜明的特征方向。多个特征值和特征向量的线性组合可以表示此矩阵。选取特征值最大的特征值对应的特征向量,此特征向量在组成矩阵的线性组合中所占的比重是最大的。一般选取前一半就可,实现降维。 二 奇异值 这里主要谈 ...
2018-06-01 16:21 0 4329 推荐指数:
主成分分析原理与实现 主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从而可以大大节省空间和数据量。最近课上学到这个知识,感觉很有意思,就在网上找一些博客 ...
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后 ...
原文地址:https://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换 ...
一、PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性 ...
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。 1. PCA的思想 PCA ...
原文地址:https://www.cnblogs.com/xinyuyang/p/11178676.html 主成分分析原理与实现 主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 n×m">n×mn×m的矩阵转换成 ...
PCA(Principal Components Analysis)主成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同时尽量减少精度的损失,线性无关的变量称为主成分。大致流程如下: 首先对给定数据集(数据是向量 ...
基本概念 主成分分析(Principal Component Analysis, PCA)是研究如何将多指标问题转化为较少的综合指标的一种重要的统计方法,它能将高维空间的问题转化到低维空间去处理,使问题变得比较简单、直观,而且这些较少的综合指标之间互不相关,又能提供原有指标的绝大部分 ...