一 条件变分自编码(CVAE) 变分自编码存在一个问题,虽然可以生成一个样本,但是只能输出与输入图片相同类别的样本。虽然也可以随机从符合模型生成的高斯分布中取数据来还原成样本,但是这样的话饿哦们并不知道生成的样本属于哪个类别。条件变分编码则可以解决这个问题,让网络按指定的类别生成样本。 在变分 ...
一 变分自编码 Variational Auto Encoder 变分自编码不再是学习样本的个体,而是学习样本的规律,这样训练出来的自编码不单具有重构样本的功能,还具有仿照样本的功能。 变分自编码,其实就是在编码过程中改变了样本的分布 变分 可以理解为改变分布 。前面所说的 学习样本的规律 ,具体指的就是样本的分布,假设我们知道样本的分布函数,就可以从这个函数中随便的取一个样本,然后进行网络解码层 ...
2018-06-01 20:48 2 1089 推荐指数:
一 条件变分自编码(CVAE) 变分自编码存在一个问题,虽然可以生成一个样本,但是只能输出与输入图片相同类别的样本。虽然也可以随机从符合模型生成的高斯分布中取数据来还原成样本,但是这样的话饿哦们并不知道生成的样本属于哪个类别。条件变分编码则可以解决这个问题,让网络按指定的类别生成样本。 在变分 ...
概述 在讨论变分自编码器前,我觉得有必要先讨论清楚它与自编码器的区别是什么,它究竟是干什么用的。否则看了一堆公式也不知道变分自编码器究竟有什么用。 众所周知,自编码器是一种数据压缩方式,它把一个数据点\(x\)有损编码为低维的隐向量\(z\),通过\(z\)可以解码重构回\(x\)。这是一个 ...
VAEs最早由“Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes, arXiv (2013)”和“Dani ...
EM算法 EM算法是含隐变量图模型的常用参数估计方法,通过迭代的方法来最大化边际似然。 带隐变量的贝叶斯网络 给定N 个训练样本D={x(n)},其对数似然函数为: 通过最大化整个训 ...
变分推断与变分自编码器 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 本文主要介绍变分自编码器(Variational Auto-Encoder, VAE)及其推导过程,但变分自编码器涉及一些概率统计的基础知识,因此为了更好地理解变分 ...
一. Core Mvc 1.传统路由 Core MVC中,默认会在 Startup类→Configure方法→UseMvc方法中,会有默认路由:routes.MapRoute("default ...
这一节使用TensorFlow中的函数搭建一个简单的RNN网络,使用一串随机的模拟数据作为原始信号,让RNN网络来拟合其对应的回声信号。 样本数据为一串随机的由0,1组成的数字,将其当成发射出去的一 ...
变分自编码器(variational autoencoder, VAE)是一种生成模型,训练模型分为编码器和解码器两部分。 编码器将输入样本映射为某个低维分布,这个低维分布通常是不同维度之间相互独立的多元高斯分布,因此编码器的输出为这个高斯分布的均值与对数方差(因为方差总是大于 ...