前言 最近有遇到些同学找我讨论sigmoid训练多标签或者用在目标检测中的问题,我想写一些他们的东西,想到以前的博客里躺着这篇文章(2015年读研时机器学课的作业)感觉虽然不够严谨,但是很多地方还算直观,就先把它放过来吧。 说明: 本文只讨论Logistic回归的交叉熵,对Softmax回归 ...
前言 最近有遇到些同学找我讨论sigmoid训练多标签或者用在目标检测中的问题,我想写一些他们的东西,想到以前的博客里躺着这篇文章(2015年读研时机器学课的作业)感觉虽然不够严谨,但是很多地方还算直观,就先把它放过来吧。 说明: 本文只讨论Logistic回归的交叉熵,对Softmax回归 ...
https://blog.csdn.net/weixin_41537599/article/details/80585201 1.Logistic Regression(逻辑回归)逻辑回归是机器学习中的一个非常常见的模型, 逻辑回归模型其实仅在线性回归的基础上,套用了一个逻辑函数。逻辑回归 ...
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾。 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项。 首先,每个queue:x(i)的特征维度是 n , 参数 θ 是一个 n×k 的矩阵,输出 ...
参考:【351】实数对向量求导公式 参考:【352】矩阵转置性质 参考:机器学习实战教程(十一):线性回归基础篇之预测鲍鱼年龄 其他方法可参考 回归算法之线性回归。 参考:通过一个例子快速上手矩阵求导 线性回归的损失函数如下:$$E_b = {(X b - y)^T (X b - y ...
https://www.cnblogs.com/cxchanpin/p/7359672.html https://www.cnblogs.com/yangzsnews/p/7496639.html ...
2.2 logistic回归损失函数(非常重要,深入理解) 上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习 ...
问题:线性回归中,当我们有m个样本的时候,我们用的是损失函数是但是,到了逻辑回归中,损失函数一下子变成那么,逻辑回归的损失函数为什么是这个呢? 本文目录 1. 前置数学知识:最大似然估计 1.1 似然函数 1.2 最大似然估计 2. 逻辑回归损失函数 ...
感知机、logistic回归 损失函数对比探讨 感知机 假如数据集是线性可分的,感知机学习的目标是求得一个能够将正负样本完全分开的分隔超平面 \(wx+b=0\) 。其学习策略为,定义(经验)损失函数并将损失函数最小化。通常,定义损失函数的策略是:误分类点到分隔超平面的总距离。【李航 ...