主成分分析(Principal Component Analysis, PCA )是一种利用线性映射来进行数据降维的方法,并去除数据的相关性; 且最大限度保持原始数据的方差信息 线性映射,去相关性,方差保持 线性映射 \[F = \sum_{i=1}^{p}u_iX_i = u^{T ...
主成分分析(Principal Component Analysis, PCA )是一种利用线性映射来进行数据降维的方法,并去除数据的相关性; 且最大限度保持原始数据的方差信息 线性映射,去相关性,方差保持 线性映射 \[F = \sum_{i=1}^{p}u_iX_i = u^{T ...
这篇文章很不错:https://blog.csdn.net/u013082989/article/details/53792010 为什么数据处理之前要进行归一化???(这个一直不明白) ...
主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维、去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主元,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。 相关知识 介绍一个PCA的教程:A tutorial ...
原文:http://www.cnblogs.com/leonwen/p/5158947.html 该算法由MatLab移植而来(具体参见上一篇博文)。但是最终输出结果却和MatLab不 ...
PCA(principle component analysis) 。主成分分析,主要是用来减少数据集 ...
主成分分析的原理 主成分分析是将众多的变量转换为少数几个不相关的综合变量,同时不影响原来变量反映的信息,实现数学降维。 如何获取综合变量? 通过指标加权来定义和计算综合指标: \[Y_1 = a_{11} \times X_1+a_{12} \times X_2 + ... +a_ ...
学习视频:【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab 老师讲得很详细,很受用!!! 定义 主成分分析(PrincipalComponentAnalysis,PCA), 主成分分析是一种降维算法,它能将多个指标转换为少数几 个主成分,这些主成分是原始变量的线性组合 ...
主成分分析法代码实现 之间我介绍过主成分份分析法,这里给出代码实现 运行结果: 上图的结果分别为特征向量,和主成分所占的方差百分比,可以发现第一个和第二个主成分占的方差百分比比较多,其他几个特别小,所以这里我们取两个主成分进行降维,对应上诉代码。 好的,代码很简单,原理 ...