最近在看人脸表情识别论文的时候,看到了有用中心损失函数(Cemter Loss),中心损失它仅仅用来减少类内(比如说同一表情)的差异,而不能有效增大类间(比如说不同表情)的差异性。如下图所示: 上图中,图(a)表示softmax loss学习 ...
center loss来自ECCV 的一篇论文:A Discriminative Feature Learning Approach for Deep Face Recognition。论文链接:http: ydwen.github.io papers WenECCV .pdf代码链接:https: github.com davidsandberg facenet 理论解析请参看https: bl ...
2018-05-25 19:40 0 2882 推荐指数:
最近在看人脸表情识别论文的时候,看到了有用中心损失函数(Cemter Loss),中心损失它仅仅用来减少类内(比如说同一表情)的差异,而不能有效增大类间(比如说不同表情)的差异性。如下图所示: 上图中,图(a)表示softmax loss学习 ...
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上一篇文章《线性回归、梯度下降》。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法 ...
通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成。发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差部分(loss term) + 正则化部分 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差 ...
线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上一篇文章《线性回归、梯度下降》。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法。 最小二乘法构建损失函数 最小二乘法也一种优化方法,用于求得目标函数的最优值。简单的说 ...
1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示。 损失函数越小,模型的鲁棒性就越好。 损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的风险 ...
参考: http://blog.csdn.net/luo123n/article/details/48878759 Hinge Loss 也叫 max-margin objective 其最著名的应用是作为SVM的目标函数 其二分类情况下,公式如下: y是预测值 ...