from:https://zhuanlan.zhihu.com/p/30461746 本项目需解决的问题 本项目通过利用信用卡的历史交易数据,进行机器学习,构建信用卡反欺诈预测模型,提前发现客户信用卡被盗刷的事件。 建模思路 项目背景 数据集包含由欧洲持卡人 ...
先看数据: 特征如下: Time Number of seconds elapsed between each transaction over two days numeric V No description provided numeric V No description provided numeric V No description provided numeric V No de ...
2018-05-25 10:47 5 5696 推荐指数:
from:https://zhuanlan.zhihu.com/p/30461746 本项目需解决的问题 本项目通过利用信用卡的历史交易数据,进行机器学习,构建信用卡反欺诈预测模型,提前发现客户信用卡被盗刷的事件。 建模思路 项目背景 数据集包含由欧洲持卡人 ...
总结:不平衡数据的分类,(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制。过采样后模型选择RF、xgboost、神经网络能够取得非常不错的效果。(2)模型层面:使用模型集成,样本不做处理,将各个模型进行特征选择、参数调优后进行集成,通常也能够取得 ...
In [2]: ...
本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念、工作原理、使用方法做了简单介绍,并提供了分类和回归的实例。 本期我们重点讲一下: 1、集成学习、Bagging和随机森林概念及相互关系 2、随机森林参数解释及设置建议 3、随机森林模型调参实战 4、随机森林模型 ...
首先,看下Smote算法之前,我们先看下当正负样本不均衡的时候,我们通常用的方法: 抽样 常规的包含过抽样、欠抽样、组合抽样 过抽样:将样本较少的一类sample补齐 欠抽样:将样本较多的一类sample压缩 组合抽样:约定一个量级N,同时进行过抽样和欠抽样,使得正负样本量和等于 ...
一、业务背景 日常工作、比赛的分类问题中常遇到类别型的因变量存在严重的偏倚,即类别之间的比例严重失调。 样本量差距过大会导致建模效果偏差。 例如逻辑回归不适合处理类别不平衡问题,会倾向于将样本判定为大多数类别,虽然能达到很高的准确率,但是很低的召回率。 出现样本不均衡场景主要有 ...
为什么要对特征进行归一化? 一句话描述:1)归一化后加快了梯度下降求最优解的速度 2)归一化有可能提高精度 1:归一化后加快了梯度下降求最优解的速度 蓝色的圈圈图代表的是两个特征的等高线。其中左图两个特征X1和X2的区间相差非常大,X1区间 ...
写在jupyter里面比较漂亮: https://douzujun.github.io/page/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/%E7%B1%BB%E4%B8%8D%E5%B9%B3%E8%A1%A1%E9%97 ...