社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏。 设图G=G(V,E),所谓社区发现是指在图G中确定nc(>=1)个社区C={C1,C2,...,Cnv},使得各社区的顶点集合构成V的一个覆盖。 若任意两个社区的顶点集合的交际均为空,则称C ...
. 社团划分 x :社区是什么 在社交网络中,用户相当于每一个点,用户之间通过互相的关注关系构成了整个网络的结构。 在这样的网络中,有的用户之间的连接较为紧密,有的用户之间的连接关系较为稀疏。其中连接较为紧密的部分可以被看成一个社区,其内部的节点之间有较为紧密的连接,而在两个社区间则相对连接较为稀疏。 整个整体的结构被称为社团结构。如下图,红色的黑色的点集呈现出社区的结构, 用红色的点和黑色的点 ...
2018-05-26 09:50 22 14298 推荐指数:
社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏。 设图G=G(V,E),所谓社区发现是指在图G中确定nc(>=1)个社区C={C1,C2,...,Cnv},使得各社区的顶点集合构成V的一个覆盖。 若任意两个社区的顶点集合的交际均为空,则称C ...
Louvain算法主要针对文献[1]的一种实现,它是一种基于模块度的图算法模型,与普通的基于模块度和模块度增益不同的是,该算法速度很快,而且对一些点多边少的图,进行聚类效果特别明显,本文用的画图工具是Gephi,从画图的效果来说,提升是很明显的。 文本没有权威,仅是个人工 ...
在做东西的时候用到了社区发现的算法,因此查找了好多人的文章,发现一个不错的总结,先转载过来 原文出处http://blog.csdn.net/aspirinvagrant/article/details/45577033 在社区发现算法中,几乎不可能先确定社区的数目,于是,必须有一种度量 ...
原文出处 http://blog.csdn.net/aspirinvagrant/article/details/45823329 派系过滤CPM方法(clique percolation method)用于发现重叠社区,派系(clique)是任意两点都相连的顶点的集合,即完全子图 ...
近期想对社区发现领域进行一下简单研究,看到一篇不错的文章,文章是根据国防科大骆志刚教授的论文《复杂网络社团发现算法研究新进展》整理的,主要是对社区发现的一些算法进行简单分析。 一、基于模块度优化的社团发现算法,也就是优化模块度Q值的一部分算法。Q值是由Newman在2004年的论文 ...
社区划分问题大多基于这样一个假设:同一社区内部的节点连接较为紧密,社区之间的节点连接较为稀疏。因此,社区发现本质上就是网络中结构紧密的节点的聚类。 从这个角度来说,这跟聚类算法一样,社区划分问题主要有两种思路: (1)凝聚方法(agglomerative ...
转自:感谢分享!https://zhuanlan.zhihu.com/p/29380602 详细解释见: www.cnblogs.com/fengfenggirl Louvain算法其实是基于层次聚类的,图聚类。层次聚类依据是类间距更大,Louvain算法图聚类依据是模块度(公式在下方 ...
在做东西的时候用到了社区发现,因此了解了一下有关社区发现的一些问题 1,社区发现算法 (1)SCAN:一种基于密度的社团发现算法 Paper: 《SCAN: A Structural Clustering Algorithm for Networks》 Auther: Xiaowei ...