代码流程 Part1 Demo实践 Step1:库函数导入 Step2:模型训练 Step3:模型参数查看 Step4:数据和模型可视化 Step5:模型预测 Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践 ...
回归就是预测数值,而分类是给数据打上标签归类。 本例中使用一个 次函数加上随机的扰动来生成 个点,然后尝试用 次方的多项式对该数据进行拟合。 拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。 原文出处:https: blog.csdn.net lsldd article details 转载 ...
2018-05-21 16:41 0 863 推荐指数:
代码流程 Part1 Demo实践 Step1:库函数导入 Step2:模型训练 Step3:模型参数查看 Step4:数据和模型可视化 Step5:模型预测 Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践 ...
回归与分类的不同 #导入回归from sklearn.ensemble import RandomForestRegressor#导入分类from sklearn.ensemble import RandomForestClassifier 1.回归问题的应用场景(预测的结果是连续的,例如预测 ...
1.机器学习的主要任务:一是将实例数据划分到合适的分类中,即分类问题。 而是是回归, 它主要用于预测数值型数据,典型的回归例子:数据拟合曲线。 2.监督学习和无监督学习: 分类和回归属于监督学习,之所以称之为监督学习,是因为这类算法必须直到预测什么,即目标变量的分类信息。 对于无 ...
一、回归预测简介 现在我们知道的回归一词最早是由达尔文的表兄弟Francis Galton发明的。Galton在根据上一年的豌豆种子的尺寸预测下一代豌豆种子的尺寸时首次使用了回归预测。他在大量的对象上应用了回归分析,包括人的身高。他注意到,如果双亲的高度比平均高度高的话,则他们的子女也倾向于 ...
一、LR分类器(Logistic Regression Classifier) 在分类情形下,经过学习后的LR分类器是一组权值w0,w1, …, wn,当测试样本的数据输入时,这组权值与测试数据按照线性加和得到x = w0+w1x1+w2x2+… wnxn,这里x1,x2 ...
一、Linear Regression 线性回归是相对简单的一种,表达式如下 其中,θ0表示bias,其他可以看做weight,可以转换为如下形式 为了更好回归,定义损失函数,并尽量缩小这个函数值,使用MSE方法(mean square equal) 缩小方法采用梯度下降 ...
机器学习基础(二) 目录 机器学习基础(二) 3 分类算法 3.1 常用分类算法的优缺点? 3.2 分类算法的评估方法 3.3 正确率能很好的评估分类算法吗 3.4 什么样的分类器是最好 ...
使用python3 学习了线性回归的api 分别使用逻辑斯蒂回归 和 随机参数估计回归 对良恶性肿瘤进行预测 我把数据集下载到了本地,可以来我的git下载源代码和数据集:https://github.com/linyi0604/MachineLearning ...