矩阵树定理 Matrix Tree 矩阵树定理主要用于图的生成树计数。 看到给出图求生成树的这类问题就大概要往这方面想了。 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理,用\(A\)计算出生成树个数。 1.无向图 ...
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理 证明 类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等。 首先,矩阵树定理用于求解一个图上的生成树个数。实现方式是: A 为邻接矩阵, D 为度数矩阵,则基尔霍夫 Kirchhoff 矩阵即为: K D A 。具体实现中,记 a 为Kirchhoff矩阵,则若存在 E u, v ,则 a u u , a v v , ...
2018-05-20 18:59 7 5257 推荐指数:
矩阵树定理 Matrix Tree 矩阵树定理主要用于图的生成树计数。 看到给出图求生成树的这类问题就大概要往这方面想了。 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理,用\(A\)计算出生成树个数。 1.无向图 ...
简单入门一下矩阵树Matrix-Tree定理。(本篇目不涉及矩阵树相关证明) 一些定义与定理 对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值。 所谓的N-1阶主子式就是对于一个任意的一个 r ,将矩阵 ...
引言 矩阵树定理是一个基于线性代数工具,解决图上生成树计数相关问题的工具。 最大的特点之一就是网上很多人都不会证明。 一些线代基础:矩阵,行列式等。 为什么要写这个证明呢?周围很多人认为比较浪费时间,一般不考。然而输入感知定理其中的智慧,不仅对于图论、线性代数有了更深入的了解,还可以为思维 ...
Matrix-tree定理:对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值。证明:https://blog.csdn.net/can919/article/details/86540819#_58 拉普拉斯矩阵 ...
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明……),FFT老多人写,而MatrixTree没人证我就写一下吧…… Matrix Tree结论 Matrix Tree的结论 ...
本篇口胡写给我自己这样的什么都乱证一通的口胡选手 以及那些刚学Matrix-Tree,大致理解了常见的证明但还想看看有什么简单拓展的人… 大概讲一下我自己对Matrix-Tree定理的一些理解、常见版本的证明、我自己的证明,以及简单的一些应用(比如推广到有向图、推广到生成树边权的乘积 ...
矩阵树定理浅谈 一、前置知识 在学习矩阵树定理之前,要知道什么是生成树,知道怎么运用高斯消元求一个矩阵的行列式。 二、定理内容 这个定理共分为三个部分:1.给出无向图,求这个图的生成树个数。2.给出有向图和其中的一个点,求以这个点为根的生成外向树个数。3.给出有向图和其中一个点,求 ...
先挂一个\(link\) 1、前置技能 \(In \ \ fact\),矩阵树跟树……严格意义上讲,并没有什么很大的关系,因为这个定理是基于图的,而不是基于树的。而对于这个定理,我们需要一系列前置操作: 一、对于矩阵的一堆定义: \(G\)是一张无向图: \(D_{I,j}\)表示为度数 ...