原文:特征工程之特征选择

特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡。因此没有统一的方法。这里只是对一些常用的方法做一个总结。本文关注于特征选择部分。后面还有两篇会关注于特征表达和特征预处理。 . 特征的来源 在做数据分析的时候,特征的来源一般有两块,一块是业务已经整理好各种特征数据,我们需要去找出适合我们问题需要的特征 另一块是我们从业务特征中自己去寻找高 ...

2018-05-13 20:13 95 35529 推荐指数:

查看详情

2. 特征工程之特征选择

1. 特征工程之特征预处理 2. 特征工程之特征选择 1. 前言 当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。 2. 特征选择的方法 通常来说,从两个方面考虑来选择特征特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征 ...

Fri Nov 16 18:17:00 CST 2018 0 3106
sklearn-特征工程之特征选择

title: sklearn-特征工程之特征选择 date: 2016-11-25 22:49:24 categories: skearn tags: sklearn 抄袭/参考资料 使用sklearn做单机特征工程 sckearn中文 周志华《机器学习》 当数据 ...

Sun Dec 02 00:45:00 CST 2018 0 1107
特征工程之特征的处理及选择

基础概念 特征工程是通过对原始数据的处理和加工,将原始数据属性通过处理转换为数据特征的过程,属性是数据本身具有的维度,特征是数据中所呈现出来的某一种重要的特性,通常是通过属性的计算,组合或转换得到的。比如主成分分析就是将大量的数据属性转换为少数几个特征的过程。某种程度而言,好的数据以及特征往往是 ...

Thu Dec 19 06:10:00 CST 2019 0 245
特征工程系列:(六)特征选择之方差过滤

有时候,数据集中的某一个特征,方差非常小,非常接近,这样导致的结果就是,没有区分度,那么这个特征其实就不是一个好的特征,因此方差过滤的思想就是,找到那些有区分度的特征(方差大) 如果一个特征服从伯努利分布,也就是说,这个特征只有两个类别。这个时候,也可以进行方差过滤,伯努利分布的方差计算公式 ...

Fri Aug 27 22:24:00 CST 2021 0 217
Python数据挖掘—特征工程特征选择

如何选择特征 根据是否发散及是否相关来选择 方差选择法 先计算各个特征的方差,根据阈值,选择方差大于阈值的特征 方差过滤使用到的是VarianceThreshold类,该类有个参数threshold,该值为最小方差的阈值,然后使用fit_transform进行特征值过滤 相关系数法 ...

Sun Oct 07 05:44:00 CST 2018 0 1586
机器学习 | 特征工程(二)- 特征选择

当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:  · 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。  · 特征与目标 ...

Tue Sep 11 22:08:00 CST 2018 0 2836
特征选择---SelectKBest

官网的一个例子(需要自己给出计算公式、和k值) 参数 1、score_func ...

Wed Jan 13 04:01:00 CST 2021 0 307
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM