一、简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完成任务,若你对RNN及LSTM不甚了解,请移步上一篇数据科学学习手札39; 二、数据 ...
一 简介 我们在前面的数据科学学习手札 中也介绍过,作为最典型的神经网络,多层感知机 MLP 结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.neural network中的MLP来实现多层感知机之外,利用tensorflow来实现MLP更加形象,使得使用者对要搭建的神经网络的结构有一个更加清醒的认识,本文就将对tensorflow搭建MLP模 ...
2018-05-19 23:05 0 2269 推荐指数:
一、简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完成任务,若你对RNN及LSTM不甚了解,请移步上一篇数据科学学习手札39; 二、数据 ...
😂,通过手动在程序中的关键位置书写合适的打印语句,可以很快速地帮助我们了解到程序运行的过程,发现问题 ...
一、简介 Shp格式是GIS中非常重要的数据格式,主要在Arcgis中使用,但在进行很多基于网页的空间数据可视化时,通常只接受GeoJSON格式的数据,众所周知JSON(JavaScript Object Nonation)是利用键值对+嵌套来表示数据的一种格式,以其轻量、易解析的优点 ...
一、简介 KNN(k-nearst neighbors,KNN)作为机器学习算法中的一种非常基本的算法,也正是因为其原理简单,被广泛应用于电影/音乐推荐等方面,即有些时候我们很难去建立确切的模型来描述几种类别的具体表征特点,就可以利用天然的临近关系来进行分类; 二、原理 KNN ...
DBSCAN的主要优点有: 1) 可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类 ...
一、简介 作为集成学习中非常著名的方法,随机森林被誉为“代表集成学习技术水平的方法”,由于其简单、容易实现、计算开销小,使得它在现实任务中得到广泛使用,因为其来源于决策树和bagging,决策树我在前面的一篇博客中已经详细介绍,下面就来简单介绍一下集成学习与Bagging; 二、集成 ...
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 日常工作中经常需要通过S ...
一、简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文章中我们只介绍了如何利用urllib、requests这样的请求库来将我们的程序模拟成一个 ...