sklearn集成方法 bagging 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 ...
效率和内存上的提升 在训练决策树计算切分点的增益时,xgboost采用预排序,即需要对每个样本的切分位置都要计算一遍,所以时间复杂度是O data 。 而LightGBM则是将样本离散化为直方图,直方图算法的基本思想是先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根 ...
2018-05-11 15:04 0 1021 推荐指数:
sklearn集成方法 bagging 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 ...
LightGBM提出两种新方法:Gradient-based One-Side Sampling (GOSS) 和Exclusive Feature Bundling (EFB)(基于梯度的one-side采样和互斥的特征捆绑) Gradient-based One-Side ...
1.简介 lightGBM包含两个关键点:light即轻量级,GBM 梯度提升机 LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势: 更快的训练效率 低内存使用 更高的准确率 支持 ...
图像恢复的MAP推理公式: $\hat{x}\text{}=\text{}$arg min$_{x}\frac{1}{2}||\textbf{y}\text{}-\text{}\textbf{H}x ...
1. 参数速查 使用num_leaves,因为LightGBM使用的是leaf-wise的算法,因此在调节树的复杂程度时,使用的是num_leaves而不是max_depth。 大致换算关系:num_leaves = 2^(max_depth)。它的值的设置应该小于 ...
1、什么是V8引擎? V8使用C++开发,并在谷歌浏览器中使用。 在运行JavaScript之前,相比其它的JavaScript的引擎转换成字节码或解释执行,V8将其编译成原生机器码(IA-32, ...
业务场景说明: 消息队列在大型电子商务类网站,如京东、淘宝、去哪儿等网站有着深入的应用, 队列的主要作用是消除高并发访问高峰,加快网站的响应速度。 在不使用消息队列的情况下,用户的请求数据 ...