iris二分类 下面例子数据集可能更好看; # SVM Regression #---------------------------------- # # This function shows how to use TensorFlow ...
Multi class Nonlinear SVM Example This function wll illustrate how to implement the gaussian kernel with multiple classes on the iris dataset. Gaussian Kernel: K x , x exp gamma abs x x X : Sepal Len ...
2018-05-05 23:00 0 1144 推荐指数:
iris二分类 下面例子数据集可能更好看; # SVM Regression #---------------------------------- # # This function shows how to use TensorFlow ...
梯度下降法 梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点 ...
线性回归形如y=w*x+b的形式,变量为连续型(离散为分类)。一般求解这样的式子可采用最小二乘法原理,即方差最小化, loss=min(y_pred-y_true)^2。若为一元回归,就可以求w与b的偏导,并令其为0,可求得w与b值;若为多元线性回归, 将用到梯度下降法求解,这里的梯度值w的偏 ...
论文链接:Focal loss for dense object detection 总体上讲,Focal Loss是一个缓解分类问题中类别不平衡、难易样本不均衡的损失函数。首先看一下论文中的这张图: 解释: 横轴是ground truth类别对应的概率(经过sigmoid ...
看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...
编者注:本文包含了使用Python2.X读取数据、数据处理、作图,构建梯度下降法函数求解一元线性回归,并对结果进行可视化展示,是非常综合的一篇文章,包含了Python的数据操作、可视化与机器学习等内容。学习了这一篇文章就大概了解或掌握相关Python编程与数据分析等内容。另外,本文还巧妙 ...
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小。另外,在运用随机梯度下降法之前需要利用 ...
看了好几次这个loss了,每次都容易忘,其他的博客还总是不合我的心意,所以打算记一下: 先说二值loss吧,即二分类问题 一、二分类 直接解释: 假设有两个类0,1。我们需要做的就是,使得属于0类的训练样本x经过网络M(x)之后的输出y尽可能的靠近0,相反则使得属于1类的训练样本 ...