代码实现 当初学习时,主要学习的这个博客 https://xyang35.github.io/2017/08/22/GAN-1/ ,写的挺好的。 本文目的,用GAN实现最简单的例子,帮助认识GAN算法。 2. 真实数据集,我们要通过GAN学习这个数据集,然后生成和他分布规则一样的数据集 ...
简介 这里的生成式网络是广义的生成式,不仅仅指gan网络,还有风格迁移中的类自编码器网络,以及语义分割中的类自编码器网络,因为遇到次数比较多,所以简单的记录一下。 背景 像素和数字 图像处理目标一般就是RGB三色通道,原始图像解码后是 ,这个矩阵传给matplotlib就可以直接绘图了,与此同 的图像matplotlib也是可以接受的,关于这点,我们来看看文档是怎么说的, Elements of ...
2018-05-04 20:13 0 1219 推荐指数:
代码实现 当初学习时,主要学习的这个博客 https://xyang35.github.io/2017/08/22/GAN-1/ ,写的挺好的。 本文目的,用GAN实现最简单的例子,帮助认识GAN算法。 2. 真实数据集,我们要通过GAN学习这个数据集,然后生成和他分布规则一样的数据集 ...
简介 示例 图像着色 图像超像素 背景模糊 人脸生成 人脸定制 文本生成图片 字体变换 *风格变换 图像修复 …… 基础 生成模型和GAN 生成模型不严谨的定义:一个能够生成我们想要的数据的模型(图模型、函数、神经网络) 生成式对抗网络(GAN ...
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 utils.py,输入如下代码: 这个函数的作用是在训练的过程中保存采样生成的图片。 在 /home/your_name/TensorFlow/DCGAN/ 下新建 ...
先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编写的代码中,d_loss_real = tf.reduce_mean ...
1. 生成式模型 2. 自动编码器(Auto-Encoder) 3. 变分自动编码器(Variational AutoEncoders) 4. 生成对抗网络(GAN,Generative Adversarial Networks) 4.1 ...
生成器和判别器的结构都非常简单,具体如下: 生成器: 32 ==> 128 ==> 2 判别器: 2 ==> 128 ==> 1 生成器生成的是样本,即一组坐标(x,y),我们希望生成器能够由一组任意的 32组噪声生成座标(x,y)处于两个半月形状上。 判别器输入的是一组 ...
简述生成式对抗网络 【转载请注明出处】chenrudan.github.io 本文主要阐述了对生成式对抗网络的理解,首先谈到了什么是对抗样本,以及它与对抗网络的关系,然后解释了对抗网络的每个组成部分,再结合算法流程 ...
在Auto-encoder中,input data通过一个encoder神经网络得到一个维度的较低的向量,称这个向量为code,code经过一个decoder神经网络后输出一个output data。 encoder 网络的作用是用来发现给定数据的压缩表示。decoder网络使原始输入的尽可 ...