8. 1 用线性回归找到最佳拟合直线 线性回归 优点:结果易于理解,计算上不复杂。 缺点:对非线性的数据拟合不好。 适用数据类型:数值型和标称型数据。 回归的目的是预测数值型的目标值。最直接的办法是依据输人写出一个目标值的计算公式。 假如你想要预测姐姐男友汽车的功率大小,可能会这么计算 ...
之前介绍的分类的目标变量都是标称型数据,接下来我们将介绍连续型的数据并且作出预测,本篇介绍的是线性回归,接下来引入局部平滑技术,能够更好地拟合数据 本篇我们主要讨论欠拟合情况下的缩减的技术,探讨偏差和方差的概念。 优点:结构易于理解,计算上不复杂 缺点:对非线性的数据拟合不好 适合数值型和标称型数据 有回归方程,求回归方程的回归系数的过程就是回归,一旦有了回归系数,再给定了输入,做预测就非常容易。 ...
2018-05-04 13:23 0 2721 推荐指数:
8. 1 用线性回归找到最佳拟合直线 线性回归 优点:结果易于理解,计算上不复杂。 缺点:对非线性的数据拟合不好。 适用数据类型:数值型和标称型数据。 回归的目的是预测数值型的目标值。最直接的办法是依据输人写出一个目标值的计算公式。 假如你想要预测姐姐男友汽车的功率大小,可能会这么计算 ...
一、回归预测简介 现在我们知道的回归一词最早是由达尔文的表兄弟Francis Galton发明的。Galton在根据上一年的豌豆种子的尺寸预测下一代豌豆种子的尺寸时首次使用了回归预测。他在大量的对象上应用了回归分析,包括人的身高。他注意到,如果双亲的高度比平均高度高的话,则他们的子女也倾向于 ...
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集。Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度 ...
来源:https://www.cntofu.com/book/170/docs/59.md 1 将特征缩放至特定范围内 一种标准化是将特征缩放到给定的最小值和最大值之间,通常在零和一之间,或者也可 ...
0.Advertising数据集 Advertising数据集是关于广告收益与广告在不同的媒体上投放的相关数据,分别是在TV,Radio,Newspaper三种媒体上投放花费与,投放所产生的收益的数据,数据共有200条,数据的格式如下: 1.数据的载入 导入相关的包 ...
和回归是机器学习可以解决两大主要问题,从预测值的类型上看,连续变量预测的定量输出称为回归;离散变量预测的 ...