在上一章中,我们知道了怎样计算球面和柱面的通量,但是很多时候,空间的曲面不容易用球坐标或柱坐标表示,此时怎样计算通量? 曲面S的通量 上一章提到,在空间向量场F中有一个曲面S,S的通量是: 我们使用不同的方法在各种情况下得到面积积元dS和单位法向量n,比如在球面和柱面中使 ...
在流体运动中,通量是单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量。在大气科学中,包含动量通量 热通量 物质通量和水通量。 本章关于向量和点积的相关知识课参考 线性代数笔记 向量 点积 。 通量 通量实际上是一种线积分。如果有一条平面曲线C和这个平面上的向量场F,通量用符号表示就是: 其中ds是曲线C的微元,n是垂直于ds的单位法向量 按C的方向顺时针旋转 : 如果把F看成一 ...
2018-05-03 18:48 2 3708 推荐指数:
在上一章中,我们知道了怎样计算球面和柱面的通量,但是很多时候,空间的曲面不容易用球坐标或柱坐标表示,此时怎样计算通量? 曲面S的通量 上一章提到,在空间向量场F中有一个曲面S,S的通量是: 我们使用不同的方法在各种情况下得到面积积元dS和单位法向量n,比如在球面和柱面中使 ...
向量场 vector field(矢量场)是由一个向量对应另一个向量的函数。向量场广泛应用于物理学,尤其是电磁场。 建立坐标系(x,y,z)。空间中每一点(x0,y0,z0)都可以用由原点 ...
在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的“变化率”。 在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同 ...
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。 本篇涉及到的单变量积分的知识可参考《数学笔记13 ...
线积分或路径积分是积分的一种。在数学中,线积分的积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。在物理学上,线积分是质点在外力作用下运动一段距离后总功。 线积分 在物理学上,力所做的功等于力与位移的乘积;更严格地说,力在足够小的距离上做的功等于力的向量与位移向量的点积 ...
线积分或路径积分是积分的一种。在数学中,线积分的积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。在物理学上,线积分是质点在外力作用下运动一段距离后总功。 如果把空间向量场F = Pi + Qj + Rk看作力场,C是质点在力场作用下移动的曲线,那么C在力场中线积分就是质点在力作 ...
1.独立变量,即一个量改变不会引起除因变量以外的其他量的改变。只有将某物理量由独立变量来表达,由它给出的函数关系才是正确的。 2.非独立变量,一个量改变会引起除因变量以外的其他量改变。把非独立变量看做是独立变量,是确定物理量间关系的一大忌。 正确确定物理表达式中的物理量是常量 ...
在二重积分中,极坐标替换是一种特殊情况,更一般的变量替换后的面积元是通过雅可比行列式来关联,替换后的积分域也会随之变动。 变量替换 二重积分可以计算面积,现在有一个椭圆 (x/a)2 + (y/b)2 = 1,如何计算该椭圆的面积? 很容易写出Area = ∫∫Rdxdy ...