答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流。 softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射 ...
一 softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到 , 区间内,可以看成概率来理解,从而来进行多分类 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 更形象的如下图表示: softmax直白来说就是将原来输出是 , , 通过softmax函数一作用,就映射成为 , 的值,而这些值的累和为 满足概率的性质 ,那么我们就可以将它理 ...
2018-04-29 16:13 4 31717 推荐指数:
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流。 softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射 ...
一、softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 更形象的如下图 ...
Softmax函数详解与推导 一、softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax ...
前面提到激活函数,在实现手写体 mnist 数据集的识别任务中的反向传播过程文件(mnist_backward.py) 用到了softmax函数,又称归一化指数函数。下面就谈谈我对其的理解。 它能将一个含任意实数的K维的向量z的“压缩”到另一个K维实向量σ(z) 中,使得每一个元素 ...
一、h-softmax 在面对label众多的分类问题时,fastText设计了一种hierarchical softmax函数。使其具有以下优势: (1)适合大型数据+高效的训练速度:能够训练模型“在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇”,特别是与深度模型对比 ...
转自:详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流! 一、softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行 ...
softmax_cross_entropy_with_logits函数原型: tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred, name=None)函数功能:计算最后一层是softmax层的cross ...
https://www.zhihu.com/question/23765351 因为这里不太方便编辑公式,所以很多公式推导的细节都已经略去了,如果对相关数学表述感兴趣的话,请戳这里的链接Softmax的理解与应用 - superCally的专栏 - 博客频道 ...