使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning ...
使用python 学习了线性回归的api 分别使用逻辑斯蒂回归 和 随机参数估计回归 对良恶性肿瘤进行预测 我把数据集下载到了本地,可以来我的git下载源代码和数据集:https: github.com linyi MachineLearning ...
2018-04-29 10:06 0 1623 推荐指数:
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning ...
1 背景介绍 数据介绍 原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/ 数据描述 (1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤相关的医学特征,最后一列 ...
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge,LogisticRegression from sklearn.model_selection import train_test_split from ...
使用python3 学习朴素贝叶斯分类api 设计到字符串提取特征向量 欢迎来到我的git下载源代码: https://github.com/linyi0604/MachineLearning ...
知识点: 逻辑斯蒂回归分类器 训练数据集:https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data 数据预处理 打开 ...
2017 3.1在一点钟从宿舍爬起来去实验室,看了一篇论文,产生如下思考。纪念下第一次通宵学习,哈哈。 悖论1:任何的快速线性分类器可以被应用生成一个整体的非线性分类器。 如下图:正方形是一个非线性分类器,那么他不就是由四个线性分类器组成的吗 悖论2:若干个线性特征可以组成一个整体 ...
监督学习经典模型 机器学习中的监督学习模型的任务重点在于,根据已有的经验知识对未知样本的目标/标记进行预测。根据目标预测变量的类型不同,我们把监督学习任务大体分为分类学习与回归预测两类。监督学习任务的基本流程:首先准备训练数据,可以是文本、图像、音频等;然后抽取所需要的特征,形成特征向量 ...