原文:机器学习中样本不均衡的问题

在实际中,训练模型用的数据并不是均衡的,在一个多分类问题中,每一类的训练样本并不是一样的,反而是差距很大。比如一类 ,一类 ,一类 等。解决这个问题的做法主要有以下几种: 欠采样:就是把多余的样本去掉,保持这几类样本接近,在进行学习。 可能会导致过拟合 过采样:就是增加比较少样本那一类的样本数量,比如你可以收集多一些数据,或者对数据增加噪声,如果是图像还可以旋转,裁剪,缩放,平移等,或者利用PCA ...

2018-04-25 11:34 0 867 推荐指数:

查看详情

机器学习-样本不均衡问题处理

机器学习,我们获取的数据往往存在一个问题,就是样本不均匀。比如你有一个样本集合,正例有9900个,负例100个,训练的结果往往是很差的,因为这个模型总趋近于是正例的。 就算全是正那么,也有99%的准确率,看起来挺不错的,但是我们要预测的负样本很可能一个都预测不出来。 这种情况,在机器学习 ...

Thu Feb 28 02:52:00 CST 2019 0 1087
关于样本不均衡问题

原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131 在分类如何处理训练集中不平衡问题   在很多机器学习任务,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目。即类别 ...

Mon Oct 11 09:18:00 CST 2021 0 150
样本不均衡问题

样本不均衡问题   1.1 正负样本不均衡(负样本主导loss)     在一张图片中,检测目标只占 ...

Sun Nov 15 00:20:00 CST 2020 0 1818
深度学习样本不均衡问题解决

深度学习样本不均衡问题解决 在深度学习样本不均衡是指不同类别的数据量差别较大,利用不均衡样本训练出来的模型泛化能力差并且容易发生过拟合。 对不平衡样本 ...

Tue Mar 12 23:45:00 CST 2019 0 1881
机器学习的类别不均衡问题

##基础概念 类别不均衡是指在分类学习算法,不同类别样本的比例相差悬殊,它会对算法的学习过程造成重大的干扰。比如在一个二分类的问题上,有1000个样本,其中5个正样本,995个负样本,在这种情况下,算法只需将所有的样本预测为负样本,那么它的精度也可以达到99.5%,虽然结果的精度很高,但它 ...

Fri Apr 20 06:06:00 CST 2018 0 14303
如何解决样本不均衡问题

解决样本不均衡问题很多,主流的几个如下: 1.样本的过采样和欠采样。 2..使用多个分类器进行分类。 3.将二分类问题转换成其他问题。 4.改变正负类别样本在模型的权重。 一、样本的过采样和欠采样。 1.过采样:将稀有类别的样本进行复制,通过增加此稀有类样本的数量来平衡 ...

Wed Apr 04 04:58:00 CST 2018 0 6712
缓解多分类的样本不均衡问题

利用深度学习做多分类在工业或是在科研环境中都是常见的任务。在科研环境下,无论是NLP、CV或是TTS系列任务,数据都是丰富且干净的。而在现实的工业环境,数据问题常常成为困扰从业者的一大难题;常见的数据问题包含有: 数据样本量少 数据缺乏标注 数据不干净,存在大量的扰动 数据 ...

Wed Dec 23 00:17:00 CST 2020 0 1647
文本分类(七):从理论到实践解决文本分类样本不均衡问题

摘要:本篇主要从理论到实践解决文本分类样本不均衡问题。首先讲了下什么是样本不均衡现象以及可能带来的问题;然后重点从数据层面和模型层面讲解样本不均衡问题的解决策略。数据层面主要通过欠采样和过采样的方式来人为调节正负样本比例,模型层面主要是通过加权Loss,包括基于类别Loss、Focal ...

Mon Sep 06 23:44:00 CST 2021 0 246
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM