深度学习中常用的优化器简介 SGD mini-batch SGD 是最基础的优化方法,是后续改良方法的基础。下式给出SGD的更新公式 \[\theta_t = \theta_{t-1} - \alpha\nabla_\theta J(\theta) \] 其中\(\alpha ...
附python代码如下: 原始的pdf文档如果需要可以在https: pan.baidu.com s GhGu c RVmKj hb bje Eg下载. ...
2018-04-25 10:40 0 1070 推荐指数:
深度学习中常用的优化器简介 SGD mini-batch SGD 是最基础的优化方法,是后续改良方法的基础。下式给出SGD的更新公式 \[\theta_t = \theta_{t-1} - \alpha\nabla_\theta J(\theta) \] 其中\(\alpha ...
摘要: 1.概述 2.激活函数与导数 3.激活函数对比 4.参考链接 内容: 1.概述 深度学习的基本原理是基于人工神经网络,信号从一个神经元进入,经过非线性的activation function,传入到下一层神经元;再经过该层神经元的activate,继续 ...
梯度下降算法 梯度下降的框架主要分三种:1,全量梯度下降。每次使用全部的样本来更新模型参数,优点是收敛方向准确,缺点是收敛速度慢,内存消耗大。2,随机梯度下降。每次使用一个样本来更新模型参数,优点是学习速度快,缺点是收敛不稳定。3,批量梯度下降。每次使用一个batchsize的样本来更新模型参数 ...
https://nndl.github.io/ch5.pdf 见5.4节 ...
关于深度学习的优化方法(On Optimization Methods for Deep Learning) 摘要 在训练深度学习时我们的主要方法是随机梯度下降法(stochastic gradient descent methods , SGDs)。尽管它易于实现,但SGDs调整困难 ...
,最后能够保证收敛于极值点(凸函数收敛于全局极值点,非凸函数可能会收敛于局部极值点) 缺点:每次学习时间过 ...
SGD SGD是深度学习中最常见的优化方法之一,虽然是最常使用的优化方法,但是却有不少常见的问题。 learning rate不易确定,如果选择过小的话,收敛速度会很慢,如果太大,loss function就会在极小值处不停的震荡甚至偏离。每个参数的learning rate都是相同 ...
Deep Learning的常用模型或者方法 1、AutoEncoder自动编码器 Deep Learning最简单的一种方法是利用人工神经网络的特点,人工神经网络(ANN)本身就是具有层次结构的系统,如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数 ...