一.输入层 1.用途 构建深度神经网络输入层,确定输入数据的类型和样式。 2.应用代码 input_data = Input(name='the_input', shape=(1600, 200, 1)) 3.源码 4.参数解析 ...
基于深度学习和迁移学习的识花实践 转 深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件。不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果。 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种 ...
2018-04-23 19:47 1 11804 推荐指数:
一.输入层 1.用途 构建深度神经网络输入层,确定输入数据的类型和样式。 2.应用代码 input_data = Input(name='the_input', shape=(1600, 200, 1)) 3.源码 4.参数解析 ...
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度 ...
相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对 ...
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可以构建神经网络层函数,比如我们称之为add_layer()函数,由于神经网络层的工作原理是一层 ...
数据不够怎么训练深度学习模型?不妨试试迁移学习 本质就是这个图!pretrained model就是你截取的部分神经网络模型(迁移学习),而nanonet就是你自己加入的网络层。 随着深度学习技术在机器翻译、策略游戏和自动驾驶等领域的广泛应用和流行,阻碍该技术 ...
1 池化层(Pooling layers) 除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性。假如输入是一个 4×4 矩阵,用到的池化类型是最大池化(max pooling),执行最大池化的树池是一个 2×2 矩阵,即f=2,步幅是 2,即s ...
卷积概念 什么是卷积? 以上图为例,中间为卷积核,在输入图像上进行滑动,当滑动到当前位置时,其卷积运算操作是对卷积核所覆盖像素,进行权值和对应位置处像素的乘加: \(\ output= (7*0+7*(-1)+6*0+7*(-1)+7*5+6*(-1)+6*0+6 ...
原理就不多讲了,直接上代码,有详细注释。 结果 ...