为什么算法成对出现?因为它们确实关系很密切呀。 前置芝士:裴蜀定理 裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式): ax + by = m 有解当且仅当m是d的倍数。 (大忙人跳过上面的屁话) 一句话 ...
困在这个算法快一个礼拜了,在经过不断的百度查找博客学习中终于弄懂了这个算法,并找到一个写的非常好的大牛的博客,故特意保留下来以便以后复习 本博客转载自:http: blog.csdn.net zhjchengfeng article details 扩展欧几里德算法 谁是欧几里德 自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求 枚举他们的因子 ...
2018-04-19 18:39 0 4034 推荐指数:
为什么算法成对出现?因为它们确实关系很密切呀。 前置芝士:裴蜀定理 裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式): ax + by = m 有解当且仅当m是d的倍数。 (大忙人跳过上面的屁话) 一句话 ...
扩展欧几里得算法 已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y,使它们满足贝祖等式:ax+by=gcd(a,b) 为什么一定存在贝祖等式呢,裴蜀定理如下: 设存在x,y使ax+by=d,d是ax+by取值中的最小正整数,d≠1。再设am+bn=e,则e ...
我们首先了解一下欧几里得算法 这个我们在小学应该就接触过 利用辗转相除法求最大公约数 用python代码表示一下: 接着我们要了解加法逆元与乘法逆元 加法逆元就是: 乘法逆元: 接下来再是利用扩展欧几里得算法求乘法 ...
1、在RSA算法生成私钥的过程中涉及到了扩展欧几里得算法(简称exgcd),用来求解模的逆元。 2、首先引入逆元的概念: 逆元是模运算中的一个概念,我们通常说 A 是 B 模 C 的逆元,实际上是指 A * B = 1 mod C,也就是说 A 与 B 的乘积模 C 的余数为 1。可表示 ...
本篇将附上扩展欧几里得算法的思想与推导; 对于一个方程\(a*x+b*y=gcd(a,b)\)来说,我们可以做如下的推导: 设有\(a*x_1+b*y_1=gcd(a,b)\); 同时我们有\(b*x_2+(a\%b)*y_2=gcd(b,a\%b)\); 对于这个方程组,我们希望知道 ...
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法。为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养。并且已经学会了学习这个算法的前置知识:欧几里得算法。 对于对欧几里得算法还有知识模糊的读者,请不要担心 ...
扩展欧几里得算法: a x + b ...
算法介绍 欧几里得算法(Euclid's Algorithm)又称辗转相除法。古希腊数学家欧几里得在其著作 The Elements 中最早描述了这种算法,所以该算法被命名为欧几里得算法。算法利用公式 gcd(a,b) = gcd(b, a mod b),求两个非负整数 a 和 b 的最大 ...