拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰和轻微的厚尾。 ...
Laplace分布的概率密度函数的形式是这样的: p x frac lambda e frac vert x mu vert lambda 一般 mu 的取值为 ,所以形式如下: p x frac lambda e frac vert x vert lambda 它是由两个指数函数组成的,所以又叫做双指数函数分布 double exponential distribution 均值和方差 均值的求 ...
2018-04-18 15:08 0 13109 推荐指数:
拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰和轻微的厚尾。 ...
【摘要】 Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作。拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。拉普拉斯算子也可以推广为定义在黎曼流形 ...
拉普拉斯平滑(Laplace Smoothing)又称 加1平滑,常用平滑方法。解决零概率问题。 背景:为什么要做平滑处理? 零概率问题:在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。 在文本分类的问题中,当一个词语没有在训练样本中出 ...
就武断的认为该事件的概率是0。 拉普拉斯的理论支撑 为了解决零概率的问题,法国数学家拉普拉斯最早提 ...
其实就是计算概率的时候,对于分子+1,避免出现概率为0。这样乘起来的时候,不至于因为某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练 ...
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用。该方法通过对图像求图像的二阶倒数 ...
朴素贝叶斯分类是一种生成式分类 p(y|x) = p(y,x) / p(x) =p(x|y) * p(y) | p(x) 在训练的时候假设x的所有特征是相互独立的,所以p(x|y) = 所有p(xi | y) 的乘积 只要通过贝叶斯展开+有xi独立 就能得到 这个模型里的参数就是,给定y ...
拉普拉斯变换 由于古典意义下的傅里叶变换存在的条件是\(f(t)\)除了满足狄拉克雷条件以外,还要在\((-\infty,\infty)\)上绝对可积,许多函数都不满足这个条件。在很多实际问题中,存在许多以时间 \(t\) 为自变量的函数,这些函数根本不需要考虑\(t<0\)的情况 ...