碰到样本数据类别不均衡怎么办? 如果有 10000个样例, 做二分类,9990条数据 都属于 正类1, 如果不处理的话 预测全部结果为 1, 准确率也为 99%,但这显然不是想要的结果。 碰到这样样本很不平衡的样例,应该怎样做。 前期数据准备 1. 欠采样 ...
基础概念 类别不均衡是指在分类学习算法中,不同类别样本的比例相差悬殊,它会对算法的学习过程造成重大的干扰。比如在一个二分类的问题上,有 个样本,其中 个正样本, 个负样本,在这种情况下,算法只需将所有的样本预测为负样本,那么它的精度也可以达到 . ,虽然结果的精度很高,但它依然没有价值,因为这样的学习算法不能预测出正样本。这里我们可以知道不均衡问题会导致样本较少那一类的高错分率,即较少一类的样本 ...
2018-04-19 22:06 0 14303 推荐指数:
碰到样本数据类别不均衡怎么办? 如果有 10000个样例, 做二分类,9990条数据 都属于 正类1, 如果不处理的话 预测全部结果为 1, 准确率也为 99%,但这显然不是想要的结果。 碰到这样样本很不平衡的样例,应该怎样做。 前期数据准备 1. 欠采样 ...
在实际中,训练模型用的数据并不是均衡的,在一个多分类问题中,每一类的训练样本并不是一样的,反而是差距很大。比如一类10000,一类500,一类2000等。解决这个问题的做法主要有以下几种: 欠采样:就是把多余的样本去掉,保持这几类样本接近,在进行学习。(可能会导致过拟合) 过采样:就是增加比较 ...
在机器学习中,我们获取的数据往往存在一个问题,就是样本不均匀。比如你有一个样本集合,正例有9900个,负例100个,训练的结果往往是很差的,因为这个模型总趋近于是正例的。 就算全是正那么,也有99%的准确率,看起来挺不错的,但是我们要预测的负样本很可能一个都预测不出来。 这种情况,在机器学习 ...
,不会直接把200个特征直接放到模型中去进行训练,而是会用一些方法,从这200个特征中挑选一些出来,放进模 ...
1、样本不均衡问题 主要分为以下几类:1)每个类别的样本数量不均衡2)划分样本所属类别的难易程度不同 2、Focal loss focal loss用来解决难易样本数量不均衡,重点让模型更多关注难分样本,少关注易分样本。假设正样本(label=1)少,负样本多,定义focal loss ...
不平衡程度相同(即正负样本比例类似)的两个问题,解决的难易程度也可能不同,因为问题难易程度还取决于我们所拥有数据有多大。比如在预测微博互动数的问题中,虽然数据不平衡,但每个档位的数据量都很大——最少的类别也有几万个样本,这样的问题通常比较容易解决;而在癌症诊断的场景中,因为患癌症的人 ...
所谓不均衡指的是不同类别的样本量差异非常大。从数据规模上分为大数据分布不均衡和小数据分布不均衡两种。 大数据分布不均衡:数据规模大,其中的小样本类的占比较少。但从每个特征的分布来看,小样本也覆盖了大部分或全部特征。 例如:1000万条数据,其中占比50万条的少数分类样本属于这种情况。 小数 ...
转自:3.4 解决样本类别分布不均衡的问题 | 数据常青藤 (组织排版上稍有修改) 3.4 解决样本类别分布不均衡的问题 说明:本文是《Python数据分析与数据化运营》中的“3.4 解决样本类别分布不均衡的问题”。 -----------------------------下面 ...