原文:1.7 理解dropout

Dropout为什么有正则化的作用 下面来直观理解一下。 上面讲到,dropout每次迭代都会让一部分神经元失活,这样使得神经网络会比原始的神经网络规模变小,因此采用一个较小神经网络好像和使用正则化的效果是一样的。 第二个直观认识是 我们从单个神经元入手,这个单元的工作就是输入并生成一些有意义的输出,通过dropout,该单元的输入被随机地消除,因此该神经元不能只依靠任何一个特征 即输入 ,因为每 ...

2018-04-13 10:16 0 2194 推荐指数:

查看详情

dropout理解~简易理解

工作原理: 所谓的dropout,从字面意思理解,就是“抛弃”。 抛弃什么呢?抛弃的是网络中隐藏层的节点(输入层和输出层是由数据类型和问题类型决定的,当然不能动啦!)。 怎么抛弃呢?dropout有一个参数p,p的取值介于0和1,含义是每个节点有p概率被抛弃。 被抛弃 ...

Wed Mar 13 07:36:00 CST 2019 0 2113
Pytorch——dropout理解和使用

  在训练CNN网络的时候,常常会使用dropout来使得模型具有更好的泛化性,并防止过拟合。而dropout的实质则是以一定概率使得输入网络的数据某些维度上变为0,这样可以使得模型训练更加有效。但是我们需要注意dropout层在训练和测试的时候,模型架构是不同的。为什么会产生这种 ...

Sat Mar 19 19:57:00 CST 2022 0 15960
Dropout理解

1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在 ...

Mon Dec 17 04:15:00 CST 2018 0 3035
Dropout浅层理解与实现

原文地址:http://blog.csdn.net/hjimce/article/details/50413257 作者:hjimce 一、相关工作 本来今天是要搞《Maxout Networks》和《Network In Network》的,结果发现maxout和dropout有点 ...

Thu Jul 26 19:07:00 CST 2018 0 3655
CNN中dropout层的理解

  dropout是在训练神经网络模型时,样本数据过少,防止过拟合而采用的trick。那它是怎么做到防止过拟合的呢?   首先,想象我们现在只训练一个特定的网络,当迭代次数增多的时候,可能出现网络对训练集拟合的很好(在训练集上loss很小),但是对验证集的拟合程度很差的情况 ...

Wed Sep 14 20:31:00 CST 2016 0 17957
DropOut

1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较 ...

Fri Sep 28 03:17:00 CST 2018 0 2348
深度学习中Dropout理解

1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高 ...

Mon Apr 08 18:59:00 CST 2019 0 1091
Dropout

From 《白话深度学习与TensorFlow》 Dropout 顾名思义是“丢弃”,在一轮训练阶段丢弃一部分网络节点,比如可以在其中的某些层上临时关闭一些节点,让他们既不输入也不输出,这样相当于网络的结构发生了改变。而在下一轮训练过程中再选择性地临时关闭一些节点,原则上都是 ...

Mon Oct 22 20:34:00 CST 2018 0 988
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM