参考(https://www.cnblogs.com/home123/p/7484558.html) (https://blog.csdn.net/tyhj_sf/article/details/79932893) Sigmoid函数 Sigmoid函数曾被广泛地应用,但由于其自身的一些缺陷 ...
摘要: .概述 .激活函数与导数 .激活函数对比 .参考链接 内容: .概述 深度学习的基本原理是基于人工神经网络,信号从一个神经元进入,经过非线性的activation function,传入到下一层神经元 再经过该层神经元的activate,继续往下传递,如此循环往复,直到输出层。正是由于这些非线性函数的反复叠加,才使得神经网络有足够的capacity来抓取复杂的pattern,选择怎样的ac ...
2018-04-13 07:53 0 918 推荐指数:
参考(https://www.cnblogs.com/home123/p/7484558.html) (https://blog.csdn.net/tyhj_sf/article/details/79932893) Sigmoid函数 Sigmoid函数曾被广泛地应用,但由于其自身的一些缺陷 ...
1. 激活函数 1.1 各激活函数曲线对比 常用激活函数: 1.2 各激活函数优缺点 sigmoid函数 优点:在于输出映射在(0,1)范围内,单调连续,适合用作输出层,求导容易 缺点:一旦输入落入饱和区,一阶导数接近0,就可能产生 ...
参考:http://www.cnblogs.com/rgvb178/p/6055213.html Sigmoid函数 Sigmoid函数曾被广泛地应用,但由于其自身的一些缺陷,现在很少被使用了。Sigmoid函数被定义为: 函数对应的图像是: 优点 ...
1. 激活函数作用 如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function。 如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。如果使用 ...
众所周知神经网络单元是由线性单元和非线性单元组成的,一般神经网络的计算时线性的,而非线性单元就是我们今天要介绍的--激活函数,不同的激活函数得出的结果也是不同的。他们也各有各的优缺点,虽然激活函数有自己的发展历史,不断的优化,但是如何在众多激活函数中做出选择依然要看我们所实现深度学习实验的效果 ...
1、什么是激活函数 2、为什么要用 3、都有什么激活函数 4、sigmoid,Relu,softmax 1. 什么是激活函数 如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function ...
本节内容比较简单,通过python的matplotlib模块画出深度学习中常用的激活函数 sigmoid### 首先是sigmoid相信大家都不陌生,大家学习逻辑回归和神经网络的时候经常遇到。 效果: 从上面的图可以看出,当输入的值比较大或者比较小的时候值会保持在0和1,常被 ...
激活函数 各激活函数曲线对比 常用激活函数: 各激活函数优缺点 sigmoid函数 tanh函数 relu函数 elu函数 softplus函数 softmax函数 dropout函数 一般规则 损失 ...