L2范数 的损失函数; 2) L1正则化 vs L2正则化。 作为损失函数 L1范数损失函数, ...
https: blog.csdn.net jinping shi article details https: blog.csdn.net zouxy article details 一 概括: L 和L 是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。 二 区别: .L 是模型各个参数的绝对值之和。 L 是模型各个参数的平方和的开方值。 .L 会趋向于产生少 ...
2018-04-04 16:43 0 21236 推荐指数:
L2范数 的损失函数; 2) L1正则化 vs L2正则化。 作为损失函数 L1范数损失函数, ...
一、概括: L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。 二、区别: 1.L1是模型各个参数的绝对值之和。 L2是模型各个参数的平方和的开方值。 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优 ...
L1和L2正则都是比较常见和常用的正则化项,都可以达到防止过拟合的效果。L1正则化的解具有稀疏性,可用于特征选择。L2正则化的解都比较小,抗扰动能力强。 L2正则化 对模型参数的L2正则项为 即权重向量中各个元素的平方和,通常取1/2。L2正则也经常被称作“权重衰减 ...
一、范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数。 一般分为L0、L1、L2与L_infinity范数。 二、范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while ...
稀疏性表示数据中心0占比比较大 引西瓜书中P252原文: 对于损失函数后面加入惩罚函数可以降低过拟合的风险,惩罚函数使用L2范数,则称为岭回归,L2范数相当与给w加入先验,需要要求w满足某一分布,L2范数表示数据服从高斯分布,而L1范数表示数据服从拉普拉斯分布。从拉普拉斯函数和高斯 ...
首先正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化的值会越大。 正则化是结构风 ...
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为平均绝对值误差(MAE)。总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 ...
...