在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: 添加该层之后: ...
最近实验当中借鉴了FPN网络,由于FPN网络对图片shape有要求,采用了两种方式,其一是在data layer.cpp中,对原图进行padding操作 其二是需要对特征图进行类似crop操作,使得两者进行eltwise操作的时候shape是一致的。 简单说一下添加padding的操作,在data layer.cpp的DataSetup 和load batch 函数中添加: 下面介绍第二种Inte ...
2018-04-04 10:03 1 6492 推荐指数:
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: 添加该层之后: ...
一般说的BN操作是指caffe中的BatchNorm+Scale, 要注意其中的use_global_states:默认是true【在src/caffe/caffe.proto】 训练时:use_global_states:false 测试时:use_global_states:true ...
caffe中大多数层用C++写成。 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记。 这时候就需要用python 写一个输入层。 如在fcn 的voc_layers.py 中 有两个类: VOCSegDataLayer ...
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索。 caffe中batchNorm层是通过BatchNorm+Scale实现的,但是默认没有bias。torch中的BatchNorm层使用 ...
1.网络中的layer层的输出,只要没有作为其他层的输入,caffe的日志就会把这个top输出(如果你用那个网站画网络结构图,你也会发现这种情况的层的颜色是不一样的,是紫色的) 2.如果你想看某一层在网络中的输出。比如你想看datalayer层的label输出,但你同时还是想把label输入 ...
转载链接:http://withwsf.github.io/2016/04/14/Caffe-with-Python-Layer/ Caffe通过Boost中的Boost.Python模块来支持使用Python定义Layer: 使用C++增加新的Layer繁琐、耗时而且很容易出错 ...
在卷积神经网络中。常见到的激活函数有Relu层 relu层有个很大的特点:bottom(输入)和top(输出)一致,原因是:RELU层支持in-place计算,这意味着bottom的输出和输入相同以避免内存的消耗 caffe中的in-place操作:caffe利用in-place计算 ...
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到。 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加 ...