crv_fit.h //多项式曲线拟合 f(x)=a0+a1x+a2x^2+a3x^3+...anx^n class Crv_fit { public : Crv_fit(void); void clear(void); //~Crv_fit(void); public ...
背景 由项目中需要根据一些已有数据学习出一个y ax b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a b,解决该问题时,首先想到的是通过spark mllib去学习,可是结果并不理想:少量的文档,参数也很难调整。于是转变了解决问题的方式:采用了最小二乘法做多项式拟合。 最小二乘法多项式拟合描述下: 以下参考:https: blog.csdn.net funn ...
2018-04-03 23:57 1 4359 推荐指数:
crv_fit.h //多项式曲线拟合 f(x)=a0+a1x+a2x^2+a3x^3+...anx^n class Crv_fit { public : Crv_fit(void); void clear(void); //~Crv_fit(void); public ...
概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x ...
概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似 ...
最小二乘法多项式曲线拟合原理与实现 概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差 ...
多元函数拟合。如 电视机和收音机价格多销售额的影响,此时自变量有两个。 python 解法: 拟合的各项评估结果和参数都打印出来了,其中结果函数为: f(sales) = β0 + β1*[TV] + β2*[radio] f(sales) = 2.9211 ...
已知数据点$p_i(x_i, y_i), i = 1, 2, ..., n$,求近似曲线$g(x, y)$, 使得近似曲线与$f(x, y)$的偏差最小。(为了使计算简单,以$f(x, y)-g(x, y)$的平方和最小作为目标函数。) 多项式拟合 设待拟合多项式为:$y = g(x ...
一个复杂的多项式可以“过拟合”任意数据,言外之意是多项式函数可以接近于任何函数,这是什么道理呢? 泰勒公式 欲理解多项式函数的过拟合,必先理解泰勒公式。 泰勒公式是一种计算近似值的方法,它是一个用函数某点的信息描述在该点附近取值的公式。已知函数在某一点的各阶导数值的情况之下 ...
的区别。并且多项式回归和普通最小二乘法联系比较紧密,所以也放到此处讲了。 1.普通最小二乘法 1 ...