1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示。 损失函数越小,模型的鲁棒性就越好。 损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的风险 ...
https: blog.csdn.net u article details . 损失函数 损失函数 Loss function 是用来估量你模型的预测值f x f x f x 与真实值Y YY的不一致程度,它是一个非负实值函数,通常用L Y,f x L Y,f x L Y,f x 来表示。损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的风 ...
2018-04-02 11:40 0 2901 推荐指数:
1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示。 损失函数越小,模型的鲁棒性就越好。 损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的风险 ...
对分类问题,设 \(y\in\{-1, 1\}\), \(\mathop{sign}(f(x))\) 代表分类器, 定义 \(z = yf(x)\) 为 margin 值。 一般来说, margin loss function 代表只需输入 margin 值即可输出 loss ...
损失函数 是用来衡量一个预测器在对输入数据进行分类预测时的质量好坏。损失值越小,分类器的效果越好,越能反映输入数据与输出类别标签的关系(虽然我们的模型有时候会过拟合——这是由于训练数据被过度拟合,导致我们的模型失去了泛化能力)。相反,损失值越大,我们需要花更多的精力来提升模型的准确率。就参数化学习 ...
损失函数在机器学习中的模型非常重要的一部分,它代表了评价模型的好坏程度的标准,最终的优化目标就是通过调整参数去使得损失函数尽可能的小,如果损失函数定义错误或者不符合实际意义的话,训练模型只是在浪费时间。 所以先来了解一下常用的几个损失函数hinge loss(合页损失)、softmax loss ...
1. 平方损失函数 Square Error: $$L(f(x),y)=(f(x)-y)^{2}$$ 这时经验风险函数是MSE,例如在线性回归中出现 2. 绝对值损失函数: $$L(f(x),y)=\vert f(x)-y\vert ...
https://blog.csdn.net/u013082989/article/details/83537370 一、 Triplet loss 1、介绍 Triplet loss最初是在 FaceNet: A Unified Embedding for Face ...
损失函数:Hinge Loss(max margin) Hinge Loss简介 Hinge Loss是一种目标函数(或者说损失函数)的名称,有的时候又叫做max-margin objective。其最著名的应用是作为SVM的目标函数。 其二分类情况下,公式如下: l(y)=max ...
模型的迭代试错过程(迭代方法): 迭代策略可以很好地扩展到大型数据集,因此在机器学习中的应用非常 ...